cKo
CRIME
IN THE UNITED STATES
ISSUED BY
JOHN EDGAR HOOVER, DIRECTOR
FEDERAL BUREAU OF INVESTIGATION
UNITED STATES DEPARTMENT OF JUSTICE
UNIFORM CRIME REPORTS-1964
FOR RELEASE
Monday, P.M., July 26, 1965
PRINTED ANNUALLY
UNIFORM
CRIME
REPORTS
for the United States
PRINTED ANNUALLY— 1965
Advisory: Committee on Uniform Crime Records
International Association of Chiefs of Police
Edmund L. McNamara, Commissioner of Police
Boston, Massachusetts, Chairman
J. Edgar Hoover, Director, Federal Bureau of Investigation
U.S. Department of Justice, Washington, D.C., 20535
For sale by the Superintendent of Documents, U.S. Government Printing Office, \^ ashington, D.C. 20402
Price 55 cents
Contents
Page
Preface v
Crime factors vii
Summary 1
Crime Index totals 2-3
Crime and population 3-6
Criminal homicide 6-7
Aggravated assault _ 7-9
Forcible rape 9-10
Robbery 10-13
Burglary 14-15
Larceny 15-17
Auto theft 17-18
Clearances 1 8-20
Persons arrested 20-22
Persons charged 22-23
Mobility of offenders 23-27
Careers in Crime 27-3 1
Police employee data 3 1-38
Introduction 39-49
The index of crime, 1965 50-89
United States, 1965 (table 1) 51
United States, 1964-65, by regions, geographic divisions
and states (table 2) 52-55
States (table 3) 56-70
Standard metropolitan statistical areas (table 4) 7 1-89
General United States crime statistics, 1965 91-106
Crime trends, 1964-65, by population groups (table 5) 92-93
Crime rates, by population groups (table 6) 94-95
Crime trends, 1965 versus average of 1960-64 (table 7)-__ 96
Offenses known, cleared by arrest, by population groups
(table 8) ____r_____ 97-98
Offenses known, cleared by arrest, by geographic divisions
(table 9) 99-100
Offenses cleared by arrest of persons under 18 years of age
(table 10) - 101-102
Disposition of persons formally charged by the police
(table 11) 103
Offenses known, cleared; persons arrested, charged and
disposed of (table 12)___ __--- 103
Police disposition of juvenile offenders taken into custody
(table 13) 104
Offense analysis trends, 1964-65, and average values
(table 14) 105
iii
General United States crime statistics, 1965 — Continued Pagf
Type and value of property stolen and recovered (table 15) _ 105
Murder victims — weapons used (table 16) 106
Murder victims by age, sex and race (table 17) 106
Arrests - 107-145
Number and rate by population group (table 18) 108-109
Arrest trends, 1960-65 (table 19) 110
Total arrest trends, 1964-65 (table 20) 111
Total arrests by age group (table 21) 112-113
Total arrests of persons under 15, under 18, under 21, and
under 25 (table 22) _ 114
Total arrests, distribution by sex (table 23) 115
Total arrest trends by sex, 1964-65 (table 24) 116
Total arrests by race (table 25) 117-119
City arrest trends 1964-65 (table 26) 120
City arrests by age (table 27) 121-122
City arrests of persons under 15, under 18, under 21, and
under 25 (table 28) 123
City arrests, distribution by sex (table 29) 124
City arrest trends by sex, 1964-65 (table 30) 125
City arrests by race (table 31) 126-128
Suburban arrest trends, 1964-65 (table 32) 129
Suburban arrests by age (table 33) 130-131
Suburban arrests of persons under 15, under 18, under 21,
and under 25 (table 34) 132
Suburban arrests, distribution by sex (table 35) 133
Suburban arrests by race (table 36) 134-136
Rural arrest trends, 1964-65 (table 37) 137
Rural arrests by age (table 38) 138-139
Rural arrests of persons under 15, under 18, under 21, and
under 25 (table 39) 140
Rural arrests, distribution by sex (table 40) 141
Rural arrests by race (table 41) 142-144
Suburban and nu'al arrest trends by sex, 1964-65 (table
42) 145
Police employee data 147-175
Full-time police employees; number, rate and ranoe (table
43) r 148-149
Full-time police officers; number, rate and ranae (table
44) ^_ 150-151
Civilian employees, percent of total (table 45) 152
Police officers killed (table 46) 152
Assaults on police officers (table 47) 153
Full-time state police and highway patrol employees, and
police killed (table 48) 154
Police employees in individual cities (tables 49 and 50) _ 155-175
Offenses in individual areas 25,000 and over by population
groups (table 51) 176-192
IV
Preface
Kecent years have witnessed a marked increase in citizen awareness
of the crime problem. This growing interest — particularly that
shown by persons who previously have taken the position that crime
is solely the responsibility of the law enforcement profession — -is most
encouraging. It offers promise of materially aiding police efforts
in the control of crime.
Individuals and organizations representing many segments of our
society are displaying a keen interest in programs to assist law
enforcement and, ultimately, to reduce the volume of crime. In many
parts of the country, studies have been instituted and plans developed
not only to achieve a better understanding of local crime conditions,
but also to find solutions to the complex problems involved. The
success of these programs depends largely upon the availability of
factual and complete statistical data — data which help individual
communities to comprehend the nature and extent of crime locally
and to formulate effective measures of prevention and control.
Under the stewardship of the FBI, the Uniform Crime Reporting
Program has, for many years, been a primary source of information
on the nature, extent, trend and distribution of crime. Recently,
there has been a sharp increase in the utilization of these data and
other police statistics by the courts, legislators, penal authorities and
others concerned with the administration of criminal justice.
Crime statistics are an essential tool of police management.
Growing recognition of this fact is resulting in an improved collection
of information — and in a continuing determination by the FBI and
the individual contributors to this voluntary national Program that
the most reliable and meaningful statistics possible be provided in
meeting the needs of the wide variety of users.
Advances in computer and related communications technology
now make it both practical and feasible to obtain crime statistics
more rapidly and in greater detail than heretofore possible. In
cooperation with state and local police agencies, the FBI is currently
developing a National Crime Information Center — -a computerized
law enforcement information network which will begin operation
early next year.
At the outset, emphasis will be placed on information regarding
wanted persons, stolen property and other operational-type data
which will assist the police officer on the street. The information
processed through the National Crime Information Center will,
however, offer a rich potential for statistical data concerning criminals
and their crimes. This potential will be fully explored and exploited
as the computerized network develops.
Ultimately, Uniform Crime Reports and related records will be
processed directly into this nationwide network, from a centralized
state source, making possible up-to-the-minute knowledge concerning
many areas of the crime problem. The availability of such timely,
in-depth statistics will open a new pathway to better service and
understanding among those engaged in the enforcement of the law
and the administration of justice.
The new computer system promises an expanded use of statistics
concerning crime. Accompanying this expanded usage is a greater
responsibility — particularly for accuracy, reliability and conformity
with established standards.
Technology has given us the tools to better utilize the information
we possess. We must cultivate this ability to the fullest.
^•"T
-Mtrra-NA^A.
John Edgar Hoover, Director
VI
Crime Factors
Uniform Crime Reports give a nationwide view of crime based on
police statistics made possible by the voluntary cooperation of local
law enforcement agencies. Since the factors which cause crime are
many and vary from place to place, readers are cautioned against
drawing conclusions from direct comparisons of crime figures between
individual communities without first considering the factors involved.
The national material summarized in this publication should be used,
however, as a starting point to determine deviations of individual
cities from the national averages.
Crime is a social problem and the concern of the entire community.
The law enforcement effort is limited to factors within its control.
Some of the conditions which will affect the amount and type of crime
that occurs from place to place are briefly outlined below:
Density and size of the community population and the metro-
politan area of which it is a part.
Composition of the population with reference particularly to age,
sex and race.
Economic status and mores of the population.
Relative stability of population, including commuters, seasonal,
and other transient types.
Climate, including seasonal weather conditions.
Educational, recreational, and religious characteristics.
Effective strength of the police force.
Standards governing appointments to the police force.
Policies of the prosecuting officials and the courts.
Attitude of the public toward law enforcement problems.
The administrative and investigative efficiency of the local law
enforcement agency.
Vll
Sunimary
{This section is for the reader interested in the general crime picture.
Technical data, oj interest primarily to police, social scientists, and
other students, are presented in the following sections. Ij you wish
assistance in the interpretation of any information in this publication,
please communicate with the Director, Federal Bureau of Investigation,
U.S. Department of Justice, Washington, D.C., 20535)
Crime Capsule
Alore than 2,780,000 serious crimes reported during 1965; a 6 percent
increase over 1964.
Fourteen victims of serious crimes per 1,000 inhabitants in 1965,
an increase of 5 percent over 1964 and 35 percent over 1960.
* * *
More than 5,600 murders, 34,700 aggravated assaults with a gun
and over 68,400 armed robberies in 1965.
* * *
118,900 robberies, 1,173,000 burglaries, 2,500,000 larcenies, and
486,600 auto thefts resulted in total property stolen in excess of
$1 billion.
Arrests of persons under 18 for serious crimes increased 47 percent
in 1965 over 1960. Increase in young age group population for same
period was 17 percent.
* * *
In 1965, 53 police officers were mm'dered in the line of duty. Fifty-
two were killed by firearms. Since 1960, 96 percent of officers mur-
dered with the use of firearms.
Over 30 percent of persons arrested in suburban areas were non-
residents of suburban community where crime committed.
* * *
Careers in Crime: Initial FBI study of offenders disclosed over 48
percent repeated within two years after being released to the street
following a prior charge.
1
Crime Index Totals
In the Uniform Crime Reporting Program the number of crimes in
seven offense categories is tabulated on the basis of counts made by
law enforcement agencies as crimes of these types become known to
them. These crime categories — murder and nonnegligent man-
slaughter, forcible rape, robbery, aggravated assault, burglary, lar-
ceny $50 and over, and auto theft — are used to provide an index of
the trend of crime in the United States. As a group, these offenses
represent the most common local crime problem. Each crime classi-
fication is serious, either by virtue of the nature of the criminal act
itself, such as murder, forcible rape, robbery and aggravated assault,
or because of the volume of criminal incidents which requu-e an in-
ordinate amount of police investigative effort and time, such as
burglary, larceny and auto theft.
During calendar year 1965 more than two and three-quarter million
serious crimes came to police attention, a 6 percent increase in the
Crime Index in 1965 over 1964. Each of the individual crime cate-
gories contributed to the overall increase. When considered as a group
the crimes of violence, which comprise 13 percent of the Crime Index
total, registered a 6 percent increase. Murder rose 6 percent, forcible
rape 9, robbery 6, and aggravated assault 6 percent. The property
crimes, which make up 87 percent of the Crime Index, rose 6 percent
as a group with burglary up 6 percent, larceny $50 and over 8 percent,
and auto theft 5 percent. Since 1960 the volume of crime has in-
creased 46 percent. Dm-ing this six-year period the property crimes
rose 47 percent and the violent crimes 35 percent.
All city population groups had increases in 1965, led by a 7 percent
rise in the group of cities having less than 50,000 inhabitants. The
group with 500,000 or more population showed a 4 percent upward
trend. City gToups in the intei mediate population range from 50,000
to 500,000 had increases from 4 to 6 percent. Suburban areas with
an 8 percent rise again had a sharper percentage increase in the volume
of crime than cities over 250,000 population, which were up 4 percent
as a group, and rural areas which were up 3 percent.
When viewed geographically, all regions experienced crime increases
in 1965 with a rise of 10 percent in the Western States, 8 percent in
the Northeastern States, and 4 percent in the North Central and
Southern States. All Crime Index offenses were up in all geographic
regions with the exception of auto theft, which declined slightly in
the Southern States.
Estimated crime fio'ures for the United States are set forth in the
following table. The trends shown in this table are based on the
actual reporting- experience of comparable places.
Estimated crime 1965
Percent cliange over
1964
Crime Index classification
Number
Rate ])er
100,000
iuliabitants
Number
Rate
Total
2, 780, 000
1,434.3
+6
+5
Murder
9,850
22, 470
118,920
206, 700
1,173,200
762, 400
486, 600
5.1
11.6
61.4
106. S
605.3
393. 3
251.0
+6
+9
+8
+6
+6
+8
+5
+6
+8
4-5
Forcible rape... . . ._ _ . _ .. .
Robbery
Aggravated assault... _ -_....._..
4-5
+4
+7
+4
Larceny $50 and over
Autotheft .. _ _ __^ . _ _ . .
Crime and Population
A crime rate, for practical purposes, should be considered as a victim
risk rate. Crime rates do not represent the number of criminals but,
more accurately, the number of victims. The crime rate relates the
incidence of crime to population. According to figures released by
the United States Bureau of the Census, total United States population
increased 1.3 percent in 1965. In that year the national Crime Index
rate was 1,434 offenses per 100,000 population, representing a 5 percent
increase over 1964.
Many factors influence the nature and extent of crime in a par-
ticular community. A number of these factors are set forth on page
vii of this publication. A crime rate is limited to a consideration of
the numerical factor of population and does not incorporate any of
the other elements which contribute to the amount of crime in an area.
The statistical tables in this publication disclose that the varying
crime experiences, especially among large cities and suburban com-
munities, are affected by a complex set of involved factors and are not
solely limited to numerical population differences.
The overall crime rate increase was largely influenced by the
continuing upsurge in the property crimes. However, crime rates rose
in each of the violent crime categories with the murder rate up 6
percent, forcible rape 8 percent, aggravated assault 5 percent and
robbery 5 percent over 1964. The number of crimes per unit of
population is highest in the large population centers and those areas
recording the fastest growing populations.
The accompanying charts illustrate the trend in serious crime from
1960 through 1965. They reveal the percentage increase in the
volume of crime, the trend in the crime rate and population growth.
A further breakdown is shown in the charts for crimes of violence and
CRIME AND POPULATION
1960-1965
PERCENT CHANGE OVER 1960
50
+ 40
+ 30
+ 20
+ 10
4
/
/
/
/
/
/
/
/
/
/ A
i y^
i y
-^^ 1 y-
/ A
I f
I i
I i
/ /
/ /
I /
/ /
/ i
/ i
/ #
f a'
/ X
/ X
/ X
/ /
/y
• ^y
,.-><^
H Crime
up 46%
J Crime Ra
^ up 35^/
Rate
\
Population
up 8%
I960 1961 1962 1963 1964 1965
CRIME = INDEX OF CRIME OFFENSES
CRIME RATE = NUMBER OF OFFENSES PER 100,000 POPULATION
FBI CHART
Chart 1
+ 50
+ 40
-f 30
+ 20
4- 10
CRIMES OF VIOLENCE
1960-1965
PERCENT CHANGE OVER 1960
<
VIOLENT
CRIME
UP 35%
■■
.-'
^^^
<
RATE
UP 25%
,-9
--.—J
,.'''"
/
1960 1561 1962 1963 1964 1965
LIMITED TO MURDER, FORCIBLE RAPE, ROBBERY, AND AGGRAVATED
ASSAULT
Chart 2
FBI CHART
CRIMES AGAINST PROPERTY
1960-1965
PERCENT CHANGE OVER 1960
-f 50
+ 40
+ 30
+ 20
+ 10
,^
^ ^^^
<
PROPERTY
CRIME
UP 47%
RATE
UP 36%
1960 1961 1962 1963 1964 1965
LIMITED TO BURGLARY, LARCENY $50 AND OVER, AND AUTO THEFT
Chart 3
FBI CHART
crimes against property. During the first six years of the 1960's the
rate for crimes of violence as a group increased 25 percent, while
crimes against property recorded a rate increase of 36 percent over
the same time period.
Arrest data commencing on page 107 will enable the reader to obtain
information on other types of crimes, as well as additional data relating
to the seven Crime Index offenses treated thus far.
Criminal Homicide
In the Uniform Crime Reporting Program, murder and non-
negligent manslavighter include all willful killings without due process
of law. There are two types of justifiable killings which are not in-
cluded; namely, the killing of a felon by a police officer or by a private
citizen. In 1965 there were 9,850 willful killings, a 6 percent increase
over 1964. Since 1960 this serious oft'ense has increased 9 percent.
The national murder rate was 5.1 killings per 100,000 persons in 1965.
Murder follows a seasonal pattern; that is, it occurs more frequently
in the summer months. The exception to this is December which
again in 1965 was high for the ^^ear. Murder per unit of population
was highest in the Southern States which reported a 5 percent increase
in volume. Murder in the Northeastern States was also up 5 per-
cent, North Central States up 9 percent, and the Western States 11
percent. In 1965 cities in the 100,000 to 250,000 population group
reported the highest percentage increase, up 10 percent, while murder
in the suburbs rose 5 percent. Willful killings in the rural area,
which had decreased in 1964, rose by over 11 percent in 1965.
In 1965, 57 percent or 5,634 murders were committed with fire-
arms. A knife or other cutting instrument was used in 23 percent
of the willful killings; personal weapons, such as beatings, strangula-
tions, etc., in 10 percent; blunt objects, 6 percent; and the remaining
4 percent were committed by other means such as by arson, poisons,
explosives, etc. When viewed by geographic regions, the use of a
gun in murder followed the same experience as prior years. A firearm
was used in 38 percent of the willful killings in the Northeastern
States, 60 percent in the Western States, 61 percent in the North
Central States, and in 66 percent of the killings in the Southern
States.
Circumstances or motives surrounding these willful killings indicate
the extent to which this crime is generally beyond police control.
Conditions that breed murder — social, human and material — vary
widely from one area to another. In 1965 killings within the family
made up 31 percent of all murder. Over one-half of these involved
spouse killing spouse and 16 percent parents killing children. Murder
outside the family unit, usually the result of altercations among
acquaintances, made up 48 percent of the willful Idllings. In the
latter category romantic triangles or lovers' quarrels comprised 21
percent and killings resulting from drinking situations 17 percent.
Felony murder, which is defined in this Program as those killings
resulting from robberies, sex motives, gangland slayings and other
felonious activities, made up 16 percent of these offenses. In another
5 percent of the total police were unable to identify the reasons for
the killings; however, the circumstances were such as to suspect
felony murder.
In those murders occurring within the family unit, a gun was used
as the weapon in 59 percent of the cases, likewise, a firearm was used
in 58 percent of the killings involving arguments between acquaint-
ances. A gun was used in 49 percent of the felony murders. The
victims of murder were 3 to 1 male and arrests for murder 5 to 1
male. By age group persons between 20 and 40 years of age were
the most frequent victims, persons over 60 years of age made up 7
percent of the murder victims and young children under 10 years 5
percent.
In 1965 police were successful in clearing up over 90 percent of
the criminal homicides. This high solution rate was fairly consistent
in all population groups and geographic regions. Arrests for murder
increased 7 percent in 1965 and since 1960 arrests for criminal homi-
cide have increased 20 percent. For calendar year 1965, 48 percent
of the adults charged with murder were found guilty of this offense,
20 percent were found guilty of some lesser offense and the remaining
32 percent were either acquitted or their cases were dismissed. Of
all persons charged with murder, 7 percent were under 18 years of age.
Aggravated Assault
During calendar year 1965, aggravated assault increased 6 percent.
Since 1960 this vicious crime has risen 40 percent in volume, with
206,700 persons attacked in the past year. For each 100,000 persons
in the United States during 1965, there were 107 victims of an aggra-
vated assault.
This crime as measured by rates was most prevalent in the Southern
States, while the North Central and Northeastern States reported the
lowest incidence. It occurs more frequently in the large cities;
however, the sharpest upward trend in the past few years has been
in the suburban areas.
Prior surveys and police experience have shown that nearly two-
thirds of these offenses involve persons within the same family unit
or the victim and assailant are acquainted. In this respect, as well
as by the nature of the attack, aggravated assault and murder are
similar. Because of the degree of the relationship between the victim
and assailant, these crimes generally occur beyond the reach of police
patrol. This offense is a crime of social disorder and frequently
iiiA^olves hazards for police. In the last five years 58 police officers
have lost their lives responding to calls for assistance involving
''disturbances" or ''family disputes."
Police nationally solved 73 percent of these crimes which came to
their attention in 1965. Police activity, as measured by arrests for
this offense, increased 5 percent during the past year. Arrests of
adidts rose 5 percent, while arrests for persons under 18 were up 7
percent. In reviewing arrests for this offense by sex, males out-
numbered females by more than 6 to 1. The 20-24 year olds led the
arrest rate age group. This is primarily an adult crime but persons
under 18 were represented in 15 percent of the arrests. By areas,
the distribution of arrests by age group was fairly consistent; however,
in the rural areas the involvement of persons under 18 was significantly
lower, namely, 7 percent.
The seasonal variation for aggravated assault remained consistent
with the experience of the past several years; namely, a high number of
offenses in the summer months tapering off to the lows in the colder
months of the year. Similar to the 1964 experience, aggravated
assault reached its peak in August, 1965, Avhile January appeared low.
Because of the frequent close relationship between victim and
offender, this offense is also a prosecutive problem. In 1965, 41 percent
of the adults charged were found guilty of aggravated assault, 18
percent were found guilty of some lesser charge, and 41 percent were
dismissed or defendants acquitted. Persons under 1 8 were charged in
15 percent of the incidents.
Approximately 17 percent of all aggravated assaults were committed
with a firearm in 1965, 36 percent by knife or other cutting instrument,
22 percent with a blunt object or other dangerous weapon, and 25
percent with personal weapons, such as hands, fists, and feet. Fire-
arms were used in 17 percent of the attacks in cities over 250,000, 20
percent of the assaults in rural areas and 16 percent in the suburbs.
It is estimated there were 35,000 assaults with a gun in 1965 in which
the victim survived.
The following table demonstrates the percent distribution by type of
weapon used in aggravated assault by geographic region in 1965.
Type of Weapon Used— Percent
Region
Firearms
Knife or
other cutting
instrument
Blunt object
or other
dangerous
weapon
Personal
weapons
Northeastern States.
10.3
16.8
19.8
18.3
39.8
36.7
35.8
29.7
23.1
21.8
19.1
26.3
26.8
North Central States
24.6
Southern States . _
25.3
Western States.
25.7
The low conviction percentage on the original charge is due primarily
to the close relationship between the assailant and victim and the
latter's refusal to prosecute. Slightly over 7 of every 10 persons
arrested for aggravated assault in 1965 were formally charged by police.
Forcible Rape
There were 22,470 forcible rapes or assaults to commit this offense
in the United States during 1965. Many offenses of this type are
not reported to a law enforcement agency primarily due to fear and/or
embarrassment on the part of the victim. Volumewise, these offenses
have been steadil}^ rising for several years and were up 9 percent over
1964. Of the seven Crime Index offenses, forcible rape showed the
highest percentage increase during 1965. Nationally, the forcible rape
rate was 23 offenses per 100,000 female population. For the period
1960-1965, the trend of this crime against the person has increased
36 percent.
Forcible rape follows a similar seasonal pattern from year to year
in that the warm or summer months, June through September
generally are high. In 1965, the month of June was the high point in
cities, while July was the high month in the suburban and rural areas.
The chart which follows demonstrates the monthly variations in 1965,
as well as the five-year average seasonal variations for this oft'ense.
Nearly two-thirds of these crimes were actual rapes by force, while the
remainder were attempts to commit rape.
These offenses occur in all areas, but they are primarily big city
crimes. The overall forcible rape rate increased 8 percent in 1965,
with cities in excess of 250,000 recording a rate of 21 per 100,000
population.
Geographically, all regions reported increases in the volume of
these offenses with the North Central States recording the sharpest
upward trend of 14 percent. The Western States reported the highest
forcible rape rate. Approximately 1 of every 5 forcible rapes occurred
in cities in excess of 1 million, which recorded an increase of 12 per-
cent. The volume was up 14 percent in the suburbs, 11 percent in
large cities as a group, and in the rural areas there was little change.
Similar to the other crimes against the person, police efforts are
limited in preventing the occurrence of forcible rape offenses since
they generally occur beyond reach of patrols. Police cleared up by
the arrest of the offender 64 of every 100 cases. For all offenses
cleared, police identified persons under the age of 18 in 14 percent of
these attacks.
Arrests for forcible rape increased 2 percent in 1965 with 64 percent
of the persons arrested under the age of 25. Arrests for persons under
18 increased 13 percent and represented 21 percent of all those arrested
221-746°— GG 2 9
for this offense. Since 1960, forcible rape arrests for persons under
18 have increased 35 percent.
Not all persons arrested are bound over for prosecutive action.
Many reasons exist, such as the victim refuses to prosecute, etc.,
which may preclude court action. In 1965, 72 percent of the persons
arrested for forcible rape were tried in court. Of all persons charged
Avith forcible rape 24 percent were referred to juvenile court jurisdic-
tion. Of the adults charged with this offense 40 percent were found
guilty of forcible rape, 17 percent of some lesser offense and 43 percent
were acquitted or had their case otherwise dismissed.
Data concerning statutory rape where no force is used and other
sex offenses are collected on the basis of persons arrested. Arrests
for these offenses decreased 8 percent in 1965 and accounted for about
1 percent of all police arrests. Adult arrests declined 7 percent and
arrests for persons under 18 were down 11 percent in the cities, 3
percent in the suburbs and up 13 percent in the rural areas. Of the
total persons charged for these crimes, 55 percent were found guilty as
charged, 7 percent were found guilty of a lesser charge, 17 percent
were acquitted or dismissed at some prosecutive level and 21 percent
of the persons charged were referred to juvenile court.
Robbery
Robbery is a violent crime, and in a great many instances, these
crimes result in personal injury to the victim and are always accom-
panied by the use of force or the threat of force. In 1965, 58 percent
of the robberies were committed by armed perpetrators. The remain-
ing 42 percent were strong-arm type crimes such as mugging, yoking,
etc., or were attempts to commit robbery.
There was a 6 percent increase in the estimated total number of
these crimes when compared to 1964. There were more than 118,900
robberies in the United States during 1965, an average of about 326
crimes of robbery every day of the 3^ear. The relative increase in this
type of crime was highest in the suburban area, up 13 percent. Cities
over 250,000 population were up 4 percent, while rural robberies
declined 4 percent. Since 1960, the number of robberies committed
in the United States has risen 29 percent. Geographically, the region
showing the greatest percentage change was the Northeastern States
up 13 percent, followed by the Western States 10, Southern States 5,
and North Central States 2 percent.
The Western States had the highest percentage of armed robbery
with almost two-thirds of these offenses committed with the use of a
weapon. Strong-arm robbery was highest in the North Central
10
Region. The following table gives the robbery breakdown for all
geographic regions.
Robbery by geographic regions
Total
North-
eastern
North
Central
Southern
Western
Armed— any weapon _ .
57.6
42.4
60.3
39.7
52.7
47.3
56.9
43.1
63 9
Strong-arm — no weapon
36 1
When considered by type, all robbery categories had increases. In
1965, street robberies, which comprised over one-half the offenses
committed in this category, rose 3 percent. Robberies of gas or
service stations had a substantial increase of 8 percent, and chain
store robberies rose 7 percent. Bank robberies, although making up
less than 1 percent of all robbery crimes, jumped 19 percent. The
average value of loot obtained by bank robbers in each attack rose
from $3,309 in 1964 to $3,789 in 1965. The average loss in each
robbery was $254 which amounted to a total dollar loss of more than
$30 million.
The 1965 rate was 5 percent higher than in 1964 with 61 victims per
100,000 population. The group of cities with populations of more
than 250,000 had a 1965 rate of 179 offenses per 100,000 inhabitants.
This was about 6 times greater than the suburban area rate and 18
times higher than the rural rate. Geographically, the robbery rate
was highest in the Western States.
Nationally in 1965, police cleared 38 percent of the robbery offenses
through the arrest of the offenders. Slightly more than 1 of 5 of these
crimes involved persons under 18 years of age as offenders. These
young persons were responsible for 32 percent of the strong-arm
robberies and 12 percent of the robberies where a weapon was used.
Robbery arrests for 1965 had the greatest percentage increase
among the young age group under 15. There was a 9 percent rise in
arrests of these young persons, whereas arrests of persons under 18
rose 6 percent and adults less than 1 percent. Persons under 25
accounted for 69 percent of all arrests for robbery nationally and
those under 18 for 30 percent. From 1960 to 1965 the arrests of
persons under 18 for robbery rose 40 percent.
Of those charged with robbery, 34 percent were referred to juvenile
court. Of the adults charged 52 percent were found guilty as charged,
19 percent guilty of a lesser offense and 29 percent of the cases were
dismissed or the defendants were acquitted.
11
CRIMES
KEY: -- 1960- 1964 MOVING AVERAGE
AGAINST THE PERSON
+ 30%
+ 20
30%
JAN.
FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.
+ 30%
30%
JAN.
FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.
-30%
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.
+30'
+20^
+ 10%
ANNUAL
30%
AGGRAVATED
ASSAULT
Chart 4
12
BY MONTH
VARIATIONS FROM 1965 ANNUAL AVERAGE
AGAINST PROPERTY
+ 30%
ROBBERY /\
-t- 20%
/'
+ 10%
ANNUAL
K--»
r
AVERAGE
^^^^^■■iMiiBiaa*^"'^ ^ • *^
- 10%
— 20%
-30%
JAN.
FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.
30%
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.
+ 30%
LARCENY
+ 10%
^---
.. — ^
ANNUAL
^^^ •*" ^^V,__,
AVERAGE
****** ^BT^*^"^^
^-^^ ^^
-20%
-30%
^^^
JAN.
FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.
+ 30%
AUTO THiFT
+ 10%
ANNUAL
^^ " iiiii ,
AVERAGE
-30%
'■■:<,.:■■■■ ':
FBI CHART
Chart 4
13
Burglary
Burglary is the crime with the highest volume of offenses known to
police of any of the Crime Index offenses. In 1965 there were 6
percent more burglaries committed than in 1964 and since 1960 this
crime has increased by 41 percent. There were over 1,173,200
burglaries committed during 1965 which averaged more than 3,200
per day. In the Uniform Crime Reporting Program, burglary in-
cludes both forcible entry and unlawful entry where no force is used
but trespass exists.
Burglary is primarily a crime of stealth and over 70 percent of these
crimes were committed at night. Places of business were victimized
in more than 50 percent of the burglaries but only 9 percent of these
nonresidential burglaries occurred during daylight hours. Resi-
dential burglaries were about evenly divided between night and day,
with 49 percent occurring during the daytime and 51 percent at night.
There were sharp increases, however, in both day and night residence
burglaries amounting to 12 and 7 percent respectivel}^.
In 1965, 76 percent of all offenses of burglary involved the use of
force to gain entry. Seventeen percent were the unlawful entry-type
where no force was used and 7 percent were attempts to commit
forcible entry.
In 1965 the average value of property stolen in each burglary was
$242, or a national total dollar loss of $284 million. This loss does
not include the damage and destruction of property which results
from breaking and entering offenses.
The bm'glar}^ rate, the number of offenses per 100,000 population,
registered a 4 percent rise in 1965 over 1964. The trend in this of-
fense was consistent in all areas. Geographically the Western States
reported an 11 percent increase, Northeastern 7, North Central 5 and
the Southern States 1 percent.
The police were able to clear 25 percent of the burglary offenses by
identification and arrest of the offender. This clearance percentage
applies with only slight variations to all population groups and geo-
graphic divisions. Persons under 18 j^ears of age were found to be re-
sponsible in 37 percent of the burglary oft'enses which were solved.
The clearance percentage for persons in the 3^oung age group ranged
from a low of 20 percent in the largest cities with over one million popu-
lation to a high of 51 percent in cities under 10,000 population.
Nationally there was a 4 percent increase in arrests for burglary.
More than half the persons arrested were under 18 years of age and 8
of every 10 persons arrested for burglary were under 25 years of age.
The highest percentage of involvement of the young age group in
burglary arrests occurred in the suburban area where 56 percent of
14
those arrested were under 18. From 1960 to 1965 arrests of persons
under 18 years of age for burglary increased 26 percent.
With respect to persons charged with burglary, over half were re-
ferred to juvenile court. For adults charged with burglary 51 percent
were found guilty as charged, 15 percent were found guilty of a lesser
offense and 34 percent were acquitted or had their cases dismissed.
Larceny
Larceny-theft includes crimes such as shoplifting, pocket-picking,
purse-snatching, thefts from autos, thefts of auto parts and acces-
sories, etc. It does not include fraudulent transactions, fraudulent
checks or embezzlement. The Crime Index offense of larceny is
limited to those thefts where the value of the goods stolen is $50
CRIME CLOCKS
1965
SERIOUS CRIMES
5 EACH MINUTE
MURDER, FORCIBLE RAPE
OR ASSAULT TO KILL
ONE EVERY 2 MINUTES
MURDER
ONE EVERY HOUR
FORCIBLE RAPE
ONE EVERY 23 MINUTES
AGGRAVATED ASSAULT
ONE EVERY 2y2 MINUTES
ROBBERY
ONE EVERY 4V2 MINUTES
BURGLARY
ONE EVERY 27 SECONDS
LARCENY
($50 and over)
ONE EVERY 41 SECONDS
AUTO THEFT
1 EACH MINUTE
FBI CHART
Chart 5
15
or more. In 1965, this Index crime increased 8 percent over 1964
and was second only to burglary in volume with 762,400 offenses
reported. Since 1960, there has been an increase in larceny $50
and over of 57 percent.
The upward trend of larceny in 1965 was most pronounced in the
suburban areas which showed an 11 percent rise. All cities when
grouped were up 6 percent and the rural areas recorded an 8 percent
upswing. Cities over 250,000 population reported an average in-
crease of 3 percent. Geographically, the trend in thefts over $50
ranged from a rise of 11 percent in the Western States, and 10 percent
in the Southern States to 8 percent in the Northeastern States and
3 percent in the North Central States.
Seasonally, these crimes conform to a general pattern which is
relatively stable throughout the 3^ear but has a tendency to peak
in August. In 1 965 there was an unusually sharp upswing in Decem-
ber when compared to prior years.
The larceny or victim rate, which is the number of thefts per
100,000 population, was 393 in 1965. This was an increase of 7 per-
cent above the rate in 1964. As in the past, the rural rate was lowest
at 176, the suburban area rate was 359, and the cities over 250,000
population had a rate of 633.
In 1965 the average value of property stolen in each Larceny-
theft was $84 which made the total loss from these crimes in excess
of $211 million. This includes the numerous thefts under $50 in
value which totaled 1,752,600 in 1965. The average dollar loss for
larceny in 1960 was $74. It is a recognized fact that man}^ thefts,
particularly those where the value of the goods stolen is small, are
never reported to law enforcement agencies. The average value
of property stolen in pocket-picking was $100, purse-snatching $45,
shoplifting $27, theft from autos $110 and miscellaneous thefts
from buildings $159.
When reviewed by type, it is found that thefts of auto parts and
accessories and other thefts from autos accounted for about 40 per-
cent of all larcenies. Thefts from buildings made up 18 percent
of all larceny violations and stolen bicycles contributed 15 percent
of the total.
Larceny is a crime of opportunity and in most instances the value
of the property stolen is a matter of chance. Many of these crimes
would be prevented if citizens would use appropriate precautionary
measures to safeguard their property. With the opportunity for
theft removed, frequently the temptation to steal is also removed.
In 1965 law enforcement agencies nationally cleared by arrest 20
percent of aU larceny cases brought to their attention. The clear-
ance rates were consistent, ranging from 18 percent in the suburban
area to 22 percent in cities under 10,000 population and in the rural
16
area. City crime figures disclose that 44 percent of all larceny
clearances involved persons under 18 years of age. This is a slight
increase in the involvement of this young age group when compared
to 1964. In the suburbs 46 percent of the larceny offenses were
cleared by the arrest of juveniles while the percentage in the rural
area was 30 percent.
Nationally, police made an average of 286 arrests for larceny for
every 100,000 population in 1965. Total arrests for this crime were
down less than 1 percent with decreases recorded in the adult arrests
as well as arrests of persons under 18. Persons under 25 accounted
for 76 percent of all arrests for theft. Persons under 21 were involved
in 67 percent, those under 18 in 55 percent. Since 1960 police arrests
of persons under 18 years of age for larceny have increased 60 percent.
Police charged 82 percent of the persons they arrested for larceny.
Of those charged, 45 percent were referred to juvenile court juris-
diction. Of the adults charged 70 percent were found guilty of
larceny, 6 percent guilty of some lesser offense, and 24 percent were
acquitted or their cases were dismissed.
Auto Theft
In 1965 there were 486,600 auto thefts, a 5 percent increase over
1964. On the average, over 1,300 motor vehicles w^ere stolen each
day during the year. Since 1960, auto theft has increased 51 percent —
more than double the percentage increase in automobile registrations.
Auto theft makes up 18 percent of the Crime Index offenses. The
value of these stolen motor vehicles exceeded one half billion dollars
in 1965. Although 88 percent of the stolen automobiles were re-
covered, the remaining 12 percent constituted a total dollar loss in
excess of $60 million.
Geographically, the Northeastern States recorded the highest
increase in volume for auto theft, followed by the North Central and
Western States. The Southern States recorded no change in the
volume of car theft. Nationally, auto theft reached its peak during
the month of October, 1965.
About one of every four auto thefts was cleared by the arrest of the
offender. The burden placed on law enforcement in this important
category is readily recognizable by the involvement of young persons
in the transportation-type thefts. Citizen alertness in keeping cars
locked and in not leaving keys in ignitions or ignitions unlocked would
aid materially in reducing these thefts since so many occur due to the
accessibility of the vehicle and the easy opportunity presented for
theft.
Across the Nation, arrests for auto theft decreased 3 percent.
Arrests of persons under 18 decreased 5 percent, while adult arrests
increased a slight 1 percent. Since 1960, however, arrests for auto
17
theft for persons under 18 years of age increased 44 percent and
adults 37 percent.
Offenders under the age of 18 accounted for 62 percent of the
arrests, while persons under 25 were responsible for 88 percent of the
total arrests for auto theft. The 15-19 year old group recorded
the highest arrest rate for auto theft. Males made up 96 percent of
the arrests for this offense.
Of all persons charged with auto theft, 61 percent are referred to
juvenile court. With respect to the adult offenders 54 percent were
found guilty of auto theft, 16 percent guilty of some lesser offense
and 30 percent had their cases dismissed or were acquitted.
Nearly two-thirds of all auto thefts occur at night and over one-half
are from private residences, apartments or streets in residential areas.
While recoveries of stolen automobiles run high, police are not able in
most instances to determine the purpose of the theft unless an arrest
is made. Prior surveys have disclosed, however, that about 75 percent
of the cars stolen were used for transportation or the purpose of the
theft was not known. Eight percent were taken for the purpose of
stripping for parts, 5 percent were used in another crime or for escape
and the remainder for resale purposes. Law enforcement agencies
are faced with a constant^ rising number of cars being stolen for
stripping for parts. Regardless of the purpose of the theft, an exten-
sive amount of police time and effort are required to handle and
process these thefts. The mounting number of auto thefts with the
average value of the stolen car being $1,030, plus the added costs due
to increased insurance rates, damages to the stolen vehicles and the
inconvenience and economic loss for the owner combine to make auto
theft a very expensive crime problem.
Clearances
In 1965 the clearance or police solution rate nationally was 24.6
percent, virtually unchanged from 1964. Reports from law enforce-
ment agencies for 1965 disclosed police cleared by arrest of the offender
or by exceptional means 91 percent of the murder, 64 percent of the
reported forcible rape, 73 percent of the aggravated assault and 38
percent of the robbery. Prbperty crime clearances were, of course,
lower with clearances shown in 25 percent of the burglary, 20 percent
of the larceny-theft and 25 percent of the auto theft. The property
crimes universally showed a lower clearance rate due to the volume of
these offenses and the absence of witnesses to most of these crimes.
When clearances for negligent manslaughter and larcen^^ under $50
in value are deleted from the computations, the police clearance rate
for the serious, or Crime Index offenses, becomes 26.3 percent. Geo-
graphically, police experience in clearing crimes by arrest varied only
18
CRIMES CLEARED BY ARREST
1965
AGAINST THE PERSON
CLEARED
91%
MURDER
NEGLIGENT
'0 MANSLAUGHTER
^^0 FORCIBLE
m/o RAPE
llOf AGGRAVATED
lO /O ASSAULT
NOT CLEARED
AGAINST PROPERTY
CLEARED
25%
mo
mo
NOT CLEARED
ROBBERY
BURGLARY
LARCENY
AUTO THEFT
FBI CHART
Chart 6
19
slightly. The highest overall clearance rates were reported by the
South Atlantic and West South Central States, each with 27.6 per-
cent. Since 1961 police clearances have decreased 8 percent with all
Crime Index classifications disclosing a downward trend.
Statistical data was collected in 1964 for the first time which per-
mitted the publication of figures indicating the extent of the impli-
cation of persons under 18 in the Crime Index offenses as measured
by the number of crimes cleared by arrests of persons in this young
age group. The statistics reported by police in 1965 confirm the
experience of the preceding year. Persons under 18 years of age
were identified as having been involved in 30 percent of the serious or
Crime Index offenses which were cleared by arrest. By including
clearances for larceny under $50 and negligent manslaughter, the
juvenile percentage jumps to 37 percent. The young age group 10
to 17 years now make up approximatelj^ 15 percent of the total United
States population and based on police solutions of crimes, they commit
42 percent of all property offenses. Both arrests and clearances are
useful as indices to measure involvement of youth in crimes committed
in a certain area or community. Arrests show the number of persons
involved while clearances measure the extent to which young people
can be identified with criminal acts. Clearances are one measure of
police acti^dty to control crime; arrests for criminal acts are another.
Further information relating to arrest data will be found in subsequent
pages of this publication.
In considering crime clearances it is pointed out again that the
arrest of one person can clear several crimes or, on the other hand
several persons ma}^ be arrested in the process of clearing one crime.
Police count a clearance when they have identified the offender, have
sufficient evidence to charge him and actually take him into custody.
Instances of exceptional clearances are counted when some element
beyond police control prevents them from formally charging an
ofi^ender, such as victim's refusal to prosecute or prosecution de-
clined in lieu of prosecution elsewhere.
Persons Arrested
In the period 1960-1965 police arrests for all criminal acts, except
traffic offenses, have risen 10 percent. During this same period
police arrests of persons under 18 years of age jumped 54 percent.
For the same period of time the increase in the 10-17 age group
population was 17 percent. Thus, it can be clearly observed the
percentage increase in the involvement of these yovmg persons, as
measured by police arrests, is more than triple their percentage
increase in the national population. Keep in mind, however, that a
relatively small percentage of the total young age population becomes
involved in criminal acts, less than 5 out of 100.
20
When only the serious crimes are used for trend purposes during
this six-year period, it is noted that arrests increased 33 percent.
Arrests of the under 18 age group for the same crimes rose 47 percent.
Although adult arrests were up sharply during this period, the up-
ward trend for the young age group was double that for adults.
The young age arrests for violent crimes were up 50 percent and for
the property crimes 47 percent.
Adult arrests for the violent crimes for the same period were up 17
percent and for property crimes 25 percent. Arrests are first a
measure of police activity as it relates to crime. Arrests do, however,
provide a useful index to measure involvement in criminal acts by
the age, sex and race of the perpetrators particularly for those crimes
which have a high solution rate. Procedures used in this Program
require that an arrest be counted on each separate occasion when a
person is taken into custody, notified, or cited. Arrests do not
measure the specific number of individuals taken into custody since
one person may be arrested several times during the year for the
same or different offenses. This happens frequently for certain types
of offenses against public order such as drunkenness, vagrancy,
disorderly conduct and related violations.
In 1965, arrests for all criminal acts, excluding traffic, increased
less than 1 percent over 1964. Nationally, there were 37 arrests for
each 1,000 persons in the United States. The arrest rate for cities
as a group was 43 per 1,000 population, for suburban areas 22, and
for the rural areas 16. The total volume of city arrests increased
almost 1 percent, suburban 5 percent, and rural 2 percent.
Nationally, persons under 15 years of age made up 9 percent of the
total police arrests; under 18, 21 percent; and under 21, 32 percent.
In the suburban areas the involvement of the young age group in
police arrests is considerably higher than the national figure with the
under 15 age group represented in 12 percent; under 18, 32 percent;
and under 21, 45 percent. In the rural area the distributions were
lower for the younger age group with the under 15 age group being
involved in 4 percent of the total police arrests; under 18 in 19 percent;
and those under 21 in 35 percent.
In reviewing arrest figures it is important to keep in mind that
police arrest practices and emphases vary which will account for some
variations in these statistics from year to year. It is noted that
arrests of persons under 18 rose 35 percent for prostitution and com-
mercialized vice, and 38 percent for Narcotic Drug Law violations.
In fact, nationally, approximately 1 of every 4 individuals arrested
for violations of the Narcotic Drug Laws was a person under 21 years
of age.
Arrests for Narcotic Drug Law violations were up 12 percent
nationally. From 1960 to 1965 arrests for this violation increased 46
21
percent. There is set forth below a tabulation by geographic region
showing the type of narcotic dnig involved in tlie arrest of the offender.
Geographic regions
North-
eastern
North
Central
Southern
Western
Narcotic drug laws (percent):
Opium or cocaine and their derivatives
Marijuana
54.1
22.5
2.5
20.9
35.1
28.4
6.0
30.4
26.8
19.0
7.6
46.6
24.0
47.2
6.8
Other— dangerous nonnarcotic drugs
22.0
Male arrests for all crimes outnumbered female arrests 7 to 1; how-
ever, female arrests continued to increase more rapidly in 1965. There
was little change in total male arrests, up 1 percent, and female arrests
increased 2 percent. This was primarily influenced by a 9 percent
increase in arrests of young females under the age of 18. Females
were arrested in 12 percent of the serious or Crime Index- type offenses.
Their involvement in these crimes is primarily for larceny. Females
accounted for 18 percent of the forgery, 20 percent of the fraud and
17 percent of the embezzlement arrests.
Persons Charged
In 1965 in the serious crime categories there was a significant 5
percent decrease from 1964 in the number of adults found guilty and a
sharp 13 percent increase in the number of acquittals and dismissals.
Each of these serious crimes contributed to the increase in the percent-
age of those acquitted or dismissed. Three out of every 10 murder
defendants were either acquitted or their cases were dismissed at some
prosecutive stage, about one-third of those charged with forcible rape
were acquitted or had their cases dismissed and over one-third of the
persons charged with aggravated assault won freedom through acquit-
tal or dismissal. Acquittals and dismissals ran high in the Narcotic
Drug Law violations which were up from 36 percent in 1964 to 38
percent in 1965. A significant fact emerges — since 1962 acquittals
and dismissals for the serious crmaes, as a group, have risen 14 percent.
Not all persons arrested are turned over to the courts for prosecution.
Some of the reasons for this are: failure of the victims to cooperate
or testify in the prosecution, persons arrested are released with warn-
ings, police determine the arrested person did not commit the offense
and sufficient evidence is not obtainable to support either a formal
charge or a subsequent prosecution. It is noted, for example, that
nationally law enforcement agencies handle about 50 percent of the
juveniles they arrest within their own agencies and release these young
persons without preferring a formal charge or referring them to juvenile
authorities. In this Program, all law enforcement agencies are urged
to obtain and report final dispositions in cases involving persons they
arrest. Tables containing this data commence on page 103. Included
in these tables are juveniles (local age limit) who were arrested and
turned over to juvenile authorities in connection with specific criminal
acts. In using these figures keep in mind that police methods of
handling juvenile offenders differ widely.
In 1965 in the serious or Index crime categories 8 out of every 10
persons arrested were formally charged by police. Of the adults who
were charged for these Index offenses, 58 percent were found guilty as
charged, 12 percent guilty of a lesser crime, and 30 percent were
acquitted or their cases were dismissed. The highest percentage of
persons found guilty on the original charge was in the larceny category
where 70 percent of the defendants were convicted for larceny. This
was followed by 54 percent conviction on the original charge for auto
theft, 51 percent for robbery and burglary, 48 percent for murder,
41 percent for aggravated assault and 40 percent for forcible rape.
The offense showing the highest percentage conviction on a lesser
charge was murder where one of every 5 defendants was convicted
on some charge other than criminal homicide. The offense which had
the highest percentage of acquittals and dismissals was forcible rape
with 43 percent. Persons charged with larceny had their cases dis-
missed or were acquitted least often— 24 percent of the time. In 45
percent of the cases where formal charges were preferred the offense
was referred to juvenile court jurisdiction. Juvenile referrals were
highest for auto theft with 61 percent. Young persons were referred
to juvenile court jurisdiction after being charged in 52 percent of the
burglary cases, 45 percent of the larceny, 34 percent of the robbery,
24 percent of the forcible rape, 15 percent of the aggravated assault
and 7 percent of the criminal homicide.
When all crime categories are reviewed, it is found convictions on
original charges remained high in the offenses against public order
and decency — driving while intoxicated, drunkenness, disorderly con-
duct and vagrancy. Offenses of arson and vandalism recorded the
greatest percentage of juvenile referrals.
Mobility of the Offender
As indicated in other pages of this publication, the mobility of the
general population, and specifically the mobility of the criminal
offender, influences crime rates from jurisdiction to jurisdiction —
state, county and local. This factor of mobility has multiplied
police problems in the control of crime and the performance of other
23
WASHINGTON, D. C. METROPOLITAN AREA
OTHER
MARYLAND
OTHER
VIRGINIA
POPULATION, 2,389,000
AREA, 1,485 SQUARE MILES
FBI CHART
Chart 7
police services. Law enforcement agencies, particiilarh^ in suburban
areas, have been experiencing sharp resident population increases
without a proportional growth in police personnel. In 1965 suburban
police agencies had an average of 1.2 police officers per 1,000 popula-
tion, considerably^ below the national average. Add to this a constant
flow of nonresident population from other parts of the metropolitan
area, as well as the mobile criminal, and a greater strain is placed
on the already madequate police strength in suburban communities.
In an attempt to measure the mobility factor in a metropolitan
area, the 17 municipal police agencies in the Washington, D.C.,
Standard Metropolitan Statistical Area cooperated with the FBI by
furnishing information in a special survey conducted in the Fall
(October-November) of 1964. Some highlights of this study are set
24
forth below. It is reasonable to assume that the experience of this
metropolitan area would be very similar to that in other large metro-
politan population centers.
For all criminal acts, excluding traffic offenses, 15.3 percent of the
persons arrested in the entire Washington, D.C., metropolitan area
were nonresidents of the place where arrested. When drunkenness
and disorderly conduct arrests were excluded, 17.3 percent of the
offenders were nonresidents. For the crimes against the person —
murder, forcible rape and aggravated assault — 10 percent of the per-
sons arrested were nonresident offenders. While 9 percent of the
robbery arrests were of nonresidents, 19 percent of the persons ar-
rested for burglary, larceny and auto theft as a group were nonresi-
dents of the community where the crimes were committed.
These mobile offenders were primarily from some part of the metro-
politan ai'ea (64 percent), although they traveled to another political
subdivision of the area to commit their criminal acts. Fourteen per-
cent came from a state other than Maryland and Virginia and the
District of Columbia. Twenty-two percent were from Maryland or
Virgmia but resided beyond the suburban fringe.
The Maryland and Virginia suburbs of this metropolitan area ex-
perienced proportionately a greater degree of criminal mobility than
the large core city, Washington, D.C. In these suburbs 31 percent of
all persons taken into custody were nonresidents of the community
where arrested. For the crimes against the person 16 percent of the
persons arrested were nonresidents. For the property crimes of
burglary, larceny and auto theft 39 percent were nonresident offenders.
In suburban robberies it was disclosed that over one-half were solved
by the arrests of offenders who were nonresidents of the community
where the crime occurred.
These mobile offenders by sex were 91 percent male and 9 percent
female. The nonresident female offenders were arrested primarily on
charges of larceny, assault, drunkenness and disorderly conduct. A
percent distribution by age group and type of offense of these mobile
offenders for the entire metropolitan Washington, D.C, area is set
forth below.
Nonresident Offender — Percent Distribution by Age Group and Type of Offense
Type of offense
Under
18
Under
20
20-24
25-29
30-34
35-39
40-44
45-49
50 and
over
Violent crimes (murder,
forcil)le rape, robbery, ag-
gravated assault)
9.1
17.7
1.6
14.0
16.7
30.7
9.5
27. 1
34.1
22.9
21.9
16.3
9.8
12.7
12.0
9.8
10.6
12.0
11.0
11.7
11.4
8.0
11.1
12.6
9.1
7.0
11.9
9.4
3.8
2.5
9.2
4.3
4 5
Property crimes (l:)urglary,
larceny, auto theft)
Drunkenness and dis-
orderly conduct
Other offenses
4.2
13.4
8 9
Total, less drunken-
ness and disorderly
conduct
14.8
27.2
20.9
10.8
11.7
10.8
8.5
3.6
6.7
•25
221-746'
66-
Victim
The increasing mobility of the general population, particularly
within a metropolitan area, also places greater demands on police
protection needs. Crime and police employee rates in this publication
are based on permanent or resident population figures since transient
population counts are not available. However, the constant flow of
nonresident population within and through metropolitan areas,
particularly by means of the automobile, is a factor for consideration
in establishing police needs in each community.
This survey in the Washington, D.C., metropolitan area revealed
that 21 percent of the victims were nonresidents of the community
in which the crime was committed. Specifically, in crimes against
the person 15 percent of the victims were nonresidents and 22 percent
of the robbery victims did not reside in the community where victim-
ized. With respect to the crimes against property, particularly
larceny and auto theft, 30 percent of the victims were nonresidents.
There were proportionately more nonresident victims of property
crimes in the large city, Washington, D.C., than suburbia, 35 per-
cent versus 20 percent. Transient victims of robbery were also higher
in the large city, 22 percent, compared with 14 percent in the suburbs.
For the crimes against the person, nonresident victims were in the
same proportion in both the large city and the suburbs.
There is set forth below a comparison based on averages relating
victims and offenders by age, sex, mobility and tjpe of crime.
Comparison of victim and offender-
-age.
sex an
d mobility by type of
Crime
Victim
Offender
Aver-
age
age
Percentage
Aver-
age
age
Percentage
Sex
Resi-
dent
Non-
resi-
dent
Sex
Resi-
dent
Non-
Male
Female
Male
Female
resident
Crimes against person
(murder, forcible rape
and aggravated assault) . .
Robbery
31
34
38
57
77
75
43
23
25
85
78
70
15
22
30
31
20
23
86
98
94
6
88
91
85
12
9
Crimes against property
(burglary, larceny and
autotheft)
15
A review of this table indicates victims are older than offenders
except for crimes against the person, particularly murder and aggra-
26
vated assault. Offenders are primarily male. This is true also of
victims, although in crimes against the person the percentage of males
is only slightly more than half. The nonresident is victimized most
frequently by robbery or other forms of theft.
The above material was gathered on the basis of police solutions
of crime. It is reasonable to assume that a greater proportion of
unsolved crimes are committed by mobile offenders. This is par-
ticularly true for the crimes against property. It is also the property
crimes which result in fewer clearances.
Although we have highlighted here the mobility of the offender
in the metropolitan area, it is clear that the vast majority of offenders
and victims of crime are of local concern. The need for police to
centralize criminal information is, therefore, apparent. This is
especially true in view of the repeater and the extent to which he
contributes to crime.
Careers in Crime
At the close of calendar year 1965 the criminal histories of 134,938
individual offenders had been entered into a study of criminal careers
which was initiated by the FBI in January, 1963. This program and
the publication of this material are made possible through the coop-
erative exchange of criminal fingerprint data among local, state and
Federal law enforcement agencies which submit criminal fingerprint
cards to the FBI's Identification Division on persons whom they
arrest. There is a lack of uniformity in submissions made by all law
enforcement agencies for all criminal charges but, generally, it is the
practice to submit a criminal fingerprint card on all serious crimes,
felonies, and certain misdemeanors. On the Federal level almost all
arrested persons are fingerprinted by the arresting Federal agency,
United States Marshals and/or the Bureau of Prisons.
Using this positive means of identification it is possible to obtain
the criminal history of an offender. This history is limited, of course,
to the extent that the offender is detected, arrested, a fingerprint
card submitted at arrest and a disposition is furnished for the arrest.
The fingerprint files of these known offenders are ''flashed" in the
FBI Identification Division thus providing a means of follow-up with
respect to their future criminal involvement. Additional information
received on these persons is added to the record which has been
previously stored on magnetic tape. For the most part, these offenders
are persons who have been arrested on a Federal charge in 1963, 1964
or 1965, parolees, persons on probation, serious state violators arrested
27
as fugitives under the Fugitive Felon Act, plus local violators who com-
prise about 25 percent of the total. Chronic violators of the immigra-
tion laws and those whose criminal fingerprints are submitted by the
military are not included in the tabulations. The data which follows
is based on an analysis of the criminal activity of offenders on whom
fingerprint cards were received from January 1, 1963, to December 31,
1965.
For the 134,938 offender records which have been processed, 3 out
of every 4 were repeaters; that is, they had a prior arrest on some
charge. This entire sample had an average criminal career of more
than 10 years (span of years from first to last arrest) during which
they averaged 5 arrests, 2.4 convictions and 1.5 imprisonments.
Disposition data is two-thirds complete for felonies but more incom-
plete for the misdemeanors or minor offenses. Leniency in the form
of probation, suspended sentence, parole and conditional release had
been afforded to 51 percent of the offenders. After the first leniency
this group averaged more than 3 new arrests. The group granted
leniency had, on the average, a criminal career extending over 12
years and they accumulated approximately seven arrests each.
The mobihty of these 134,938 offenders reveals that slightly over
52 percent were arrested in one state, 25 percent in two states and 22
percent in thi'ee or more states. A distribution by sex indicates that
93 percent were males and 7 percent females. By race, 70 percent
were white, 27 percent Xegro and 3 percent all other.
The following table sets forth a distribution by age group in 1965,
a distribution by age at first arrest and mobility by age gToup.
Table A. — Distribution by Age Group
Age group
Age. 1965
Age at first arrest
Number
Percent
Number
Percent
Under 20
6,322
25, 984
25, 151
37, 969
24, 044
15,468
134,938
4.7
19.3
18.6
28.1
17.8
11.5
52, 023
37,206
17,307
17,145
7,421
3,836
38.6
20-24
25-29
27.6
12.8
30-39
40^9
12.7
5.5
2.8
Total
100.0
134. 938
100.0
Distribution by Mobility
Age group
Arrests in 1
state
Arrests in 2
states
Arrests in 3 or
more states
Under 20 . .
Percent
72.8
57.0
50.6
47.4
48.4
55.8
Percent
22.8
29.9
27.2
25.2
22.3
21.2
Percent
4.4
20-24— . _
13.1
25-29
30-39
22. 2
27.4
40-49
29.3
50 and over
23.0
Total
52.2
25.4
22.4
'2S
This sample of almost 135,000 individual criminal records is pri-
marily made up of Federal offenders in the sense that it was their
involvement with the Federal process which brought them into the
program. Keep in mind, however, that most of the Federal crimes
as defined by statute are also local in nature. These violators are
generally the serious offenders and, therefore, likely repeaters since
it is not police practice to submit fingerprint cards on minor or petty
crimes.
Profiles
Table B, Profile of Known Repeaters by Type of Crime, provides
pertinent information for comparative purposes. It suggests the
extent to which the repeater contributes to our crime counts year
in and year out. The group of offenders making up Table B are
repeaters; that is, they have been arrested at least twice and were
selected by type of crime based on their last charge. The average
age of these offenders ranged from 27 years for the auto thief to 45
years for the gambler. For the auto thief who repeated in that
offense, the average age at first arrest for auto theft was 23 and the
gambler 40 years of age. Again, the extreme ranges of average
age at first arrest for any offense were the gambler 31, and the auto
thief, robber, and burglar 20 years of age. Since fingerprint cards are
not submitted with any degree of consistency on juvenile arrests, the
average age at first arrest is influenced upward.
Criminal careers of these offenders ranged from 13 years for the
gambler to 6 years for the more youthful auto thief and rapist. How-
ever, averages indicated that the burglar, auto thief and robber had
the highest rate of relocating in the serious crime categories. More
than half of the crimes committed by these offenders were of the Crime
Index type; namely, murder, forcible rape, robbery, aggravated assault,
burglary, larceny and auto theft.
Repeating in the same crime was highest for the narcotic offender
53 percent, the burglar 48 percent, the gambler 47 percent, and the
bogus check offender 40 percent. Thirty-six percent of the auto
thieves repeated in auto theft during the course of their criminal
careers and 33 percent of the robbers repeated in robbery. For the
crimes against the person — murder, rape and felonious assault — the
rate of repeating in the same crime is considerably lower than for the
property offenses.
The frequency of leniency action in the form of probation, suspended
sentence or parole ranged from 38 percent for the murderers to 55
percent for the burglars. Like the burglar, 54 percent of the bogus
check offenders also had leniency; yet, both of these criminal types
have a high rate of repeating and, repeating in the same offense. The
29
c-i -^ o ro 05 1
»co ^co ic.
^ 'M t^ 'M 05 t^ '
CO •* 00 CD 05 CO
Am
•23
11
O c3
CC OO CO O CD CD ro
t rt CO •
• eoococoro
3 S"
i^
; 00 •* O 00 00 -^
§ >5 *j C3 "" ^
!* o o 0.5 & S
; W; bf b£ n i2 -§
: r3 rt rt o c3^
; O « O o OhI5
; tX b£ bJO b£ ex ,,
. cS c3 C3 cS c3 3
S O Oi o o o .2
; > > > > >-C
=; CI ^j= Q C ^^
SiCC
O bC
« X
^ ,-S o
^o o £
30
auto thief, bogus check offender and the narcotic violator had tf.
highest proportion of leniency for specific charges.
The forger, the auto thief, the burglar and the robber recorded the
highest mobility with over 30 percent having been arrested in 3 or
more states during the course of their criminal careers.
Follow- up
The first results of follow-up since this program was initiated in
January, 1963, are set forth in Table C below. The 6,907 offenders
in this tabulation represent criminal offenders who were released to
the street between January and June, 1963. They were released
either by probation, suspended sentence, parole, fine or acquittal
and dismissal. By the posting of ''flash'' notices in the criminal
identification records of these offenders, arrests for new crimes were
added to each record when received through the submission of a
fingerprint card. The cutoff date on follow-up was June, 1965;
therefore, the experience reported below covers a two-year period.
Age was computed at time of entry into the program in 1963. As a
group, 48 percent of these offenders were arrested for new crimes
within two years — namely between June, 1963, and June, 1965.
Table C — Repeaters By Age Group
[Two-year follow-up]
Age
Total
Nonrepeaters
Repeaters
Number
Percent
Number
Percent
Under 20
871
1,565
1,118
1,620
1,069
664
365
664
511
869
678
503
41.9
42.4
45.7
53.6
63.4
75.8
506
901
607
751
391
161
58.1
20-24
57.6
25-29
54.3
30-39
46.4
40-49
36.6
50 and over
24.2
Total all ages
6,907
3,590
52.0
3,317
48.0
When the above records are examined by type of offense for which
charged at time of release to the street, it was found that 59 percent
of the burglars, 70 percent of the auto thieves and 64 percent of the
robbers repeated. Of those charged with theft 45 percent repeated,
as did 65 percent of the narcotic offenders and 49 percent of the forgers.
Police Employee Data
Tables are set forth commencing on page 148 of this publication
which contain information on average police strength by geographic
division and population group, percent civilian employees, law en-
forcement officers assaulted and killed in the line of duty and indi-
31
vidual city listings of police emploj-ees for cities with over 2,500
population which made their figures available.
The year 1965 witnessed no change in the national police employee
rate for all cities when compared with 1964. The average rate of 1.9
police employees per 1,000 population (including civilian personnel)
has been relatively constant since 1958 despite the rapidly rising
incidence of crime and the growing frequency in the number of
requests for police service. Many departments are below this
average, however, when arrayed it is found that one-half of the de-
partments have a police employee rate of 1.4 per 1,000 population or
less. Due to the fact that on the average 85 to 90 percent of the total
police budget is for salaries, it is incumbent on the law enforcement
administrator to insure he is utilizing available manpower in the most
efficient and effective way.
A table is offered this year (Table 44) which, for the first time,
provides figures as to the average police employee ratio using only
sworn police personnel as a base. It will be noted the national
average decreases to 1.7 per 1,000 population when civilian employees
are eliminated from the tabulations. There exists a healthy and
growing trend among law enforcement agencies to utilize civilian
employees in clerical and other nonpolice jobs which releases sworn
personnel for patrol and other enforcement functions. Efforts in this
direction are important at any time, but particularly now when
recruiting acceptable officer candidates is difficult.
Crime in the suburbs continues to increase at a more rapid pace
than in the large cities, yet the national police emplo3^ee ratio for
suburban areas of 1.4 is well below the average for all cities. This
figure is reduced to 1.2 w^ien civilian personnel are excluded. When
arrayed by quartile, it is found that at least 50 percent of the cities in
this group had police employee rates ranging from 1.0 to 1.6.
The average employee rate for sheriffs' departments is 1.0, but
drops to less than one (0.8) when only sworn personnel are con-
sidered. When quartiles are used the rates range from 0.3 to 0.9
per 1,000 population for 50 percent of the departments.
It must be recognized that the law enforcement responsibilities
of sheriffs' departments differ considerably in various sections of the
United States. In some jurisdictions for example the sheriffs'
activities are limited in large part to civil functions. The depart-
ments used in computing rates, however, are all engaged in full-
scale police activity and are responsible for all phases of law en-
forcement in their jurisdictions. In using these rates caution must
be exercised because of the variations in the nature and extent of
the duties performed by the sherift'.
Any attempt to measure police activity on the basis of a broad
collection of data can at best be a rough yardstick. Police workloads
32
do vary geographically by volume and type of activity. The tabula
tion below shows the number of reported Crime Index offenses,
criminal arrests made, and traffic charges issued per sworn police
officer by geographic region. It is based on 1965 calendar year data.
This indicates a high rate of activity for the police officer in the
Western States followed by the Southern and North Central States
and a comparatively low activity rate in the Northeastern States.
Annual number per
officer (geographic region)
Police Activity
North-
eastern
North
Central
Southern
Western
Crime Index offenses reported.
Drunkenness and disorderly conduct arrests
Other arrests (criminal)
6.5
3.8
6.4
130
10.0
8.7
15.8
244
11.3
21.5
22.1
244
15.8
14.7
21 1
Traffic charges issued
322
The police employee strengths of State Police and State Highway
Patrol organizations are set forth in Table 48. In addition, this table
provides information concerning the miles of prmiary highway and
the number of state motor vehicle registrations per sworn employee
by state.
Figures with respect to average police strength, as well as rates
which are set forth in Tables 43 and 44, are supplied as a guide and
must not be interpreted as representing desirable or recommended
police strength. A careful analysis must be made of the various
factors which contribute to the need for police service in a given
community before a determination can be reached with regard to
adequate manpower requirements.
Police Killed
The number of law enforcement officers murdered in the line of
duty in 1965 dropped slightly from 1964. There were 53 police
victims in 1965 whereas there were 57 officers murdered in 1964.
With the addition of these 53 deaths the total number of police killings
increased to 278 for the six-year period 1960-1965. In 1965 there
were 30 additional deaths of law enforcement officers as a result of
accidents in the line of duty, most of which were automobile or
motorcycle fatalities.
Effecting arrests and transporting prisoners continue to carry the
greatest risk for police as evidenced by the fact that 30 percent of the
278 men murdered over the six-year period were engaged in handling
these police functions. In fact, 42 percent of the 53 police killed in
1965 were making arrests or were transporting prisoners who had
been apprehended. A further analysis of the type of activity in which
the 278 officers were involved discloses 21 percent were answering
disturbance-type calls, such as family quarrels, man with a gun, etc.,
while 20 percent were murdered when they interrupted a robbery in
33
POLICE EMPLOYEE DATA
AVERAGE NUMBER OF POLICE DEPARTMENT EMPLOYEES, AND
RANGE IN NUMBER OF EMPLOYEES, PER 1,000 INHABITANTS
BY POPULATION GROUPS, DECEMBER 31, 1965
7.8
5.4
4.2
AV.
1.4
AV.
2.6
1.0
3.8
0 c
AV.
1.5
.6
d.U
2.8
AV.
1.5^
.2
AV.
1.7
.9
.2
AV.
1.5
.2
ALL
CITIES
CITIES
CITIES
CITIES
CITIES
CITIES
CITIES
OVER
100,000
50,000
25,000
10,000
LESS
250,000
TO
TO
TO
TO
THAN
250,000
100,000
50,000
25,000
10.000
FBI CHART
Chart 8
3-1
progress or were pursuing robbery suspects. Interrupting burglarie
in progress or pursuing burglary suspects accounted for 12 percent
of the deaths, investigating suspicious persons and circumstances 11
percent and 17 men or 6 percent were murdered in unprovoked attacks
by berserk or mentally deranged or disturbed individuals, a number
of whom had prior histories of mental disorders. In the following
table, police murders are distributed by geographic region and by
type of activity in which the officers were engaged.
Police Killed by Geographic Region and Type of Activity 1960-1965
1. Responding to "disturbance" calls
(family quarrels, man with gun, etc.)
2. Burglaries in progress or pursuing
burglary suspects
3. Robberies in progress or pursuing
robbery suspects
4. Attempting other arrests and trans-
porting prisoners
5. Investigating suspicious persons and
circumstances
6. Berserk or deranged person (no warn-
ing-unprovoked attack)
Total
North-
east
North
Central
19
South
126
West
50
Total
Number Percent
58
33
55
84
31
17
278
100
In 1965 all but one of the 53 officers died from wounds inflicted by
firearms — 32 were victims of handguns, 13 were killed by use of
shotguns and 7 by rifles. Since 1960 firearms have been used in
96 percent of the murders of police officers in the line of duty and of
those killed by firearms, 78 percent were murdered with handguns.
The median period of police service for officers slain since 1960 re-
mained at 6 3"ears. Ten percent of the murdered officers had been
employed in law enforcement one year or less, 59 percent had 5 or
more years of police experience and almost one-third were veterans
of 10 years or more service.
Police officers on car patrol contributed the heaviest toll to those
murdered in 1965 with a total of 37 deaths. This is typical of the
six-year period during which time 186 of the deceased officers were
assigned to car patrols, 24 were on foot patrol, 48 were detectives or
were assigned duties of a specialized nature and 20 were technically
off duty. The latter became involved in the incidents which resulted
in their deaths by attempting to prevent a crime occurring in their
presence.
During 1965, 27 of the officers who died from criminal action were
being assisted at the time of the incident by a fellow officer while 26
were alone. During the six years for which these figures have been
accumulated 123 officers died while operating alone, whereas 155
were receiving assistance at the scene when they were killed.
35
In studying police deaths in cities where department pohcy is
known with respect to use of one-man patrol cars, two-man patrol
cars or combinations of 1 and 2-man patrol cars, it is found that 87
officers lost their lives in 69 cities over the 6-year span under con-
sideration. Forty-five (52 percent) of these men were assigned to
two-man car patrols, while 42 (48 percent) were assigned to one-man
cars. In carrying this analysis a step further it is found that in 22
of the 42 incidents where the police victim was assigned to a one-man
car, the lone officer was receiving assistance from fellow officers at
the scene of the crime. It is thus determined that of the 87 deaths,
officers were being aided at the scene in 77 percent of the cases and
were alone at the scene in 23 percent of the cases. In those cities
which used combinations of 1 and 2-man patrol cars there Avere 36
murders reported where the officers were engaged in two-man car
operations and 25 where one-man cars were in use.
During 1964, the latest year for which figures are available, there
was a slight 3 percent upward trend in the number of cities using only
one-man cars. There was a corresponding 3 percent decrease in the
number of cities using combinations of one and two-man cars. The
number of cities using two-man cars exclusively remained at 5 percent
of the total reporting cities, unchanged from the preceding year.
A table is presented this year which indicates the type of police
duty to which murdered officers were assigned, as well as the type
of police activity in which they were engaged at the time they were
murdered. These figures disclose the highest incidence of police
deaths resulted when the law enforcement officers who were assigned
to one-man patrol cars attempted to make arrests or transport pris-
oners. The second most frequent set of circumstances surrounding
these deaths occurred among officers assigned to two-man car patrols
who were responding to disturbance calls including such things as
family quarrels, man with a gun, etc. This category was followed
closely by deaths of police officers assigned to two-man patrol cars
who were making arrests or transporting prisoners. It should be
noted in studying these figures that, as indicated above, many of the
officers assigned to one-man patrol cars and foot patrol were receiving
assistance on the scene from fellow officers at the time of the fatal
attacks.
During the six-year period for which statistics have been maintained
there have been 362 persons involved as offenders in the 278 murders.
When accounting for these 362 persons, it is found that 304 were
arrested, 43 were slain justifiably by police at the time of the incident
or shortly thereafter, 13 committed suicide, 1 died a natural death
and 1 drowned before being taken into custody.
36
POLICE KILLED BY FELONS
BY TYPE OF POLICE ACTIVITY
1960--1965
RESPONDING TO "DISTURBANCE" CALLS
(Family quarrels, man with gun, etc.)
BURGLARIES IN PROGRESS, OR
PURSUING BURGLARY SUSPECTS
ROBBERIES IN PROGRESS, OR PURSUING
ROBBERY SUSPECTS
ATTEMPTING OTHER ARRESTS AND
TRANSPORTING PRISONERS
INVESTIGATING SUSPICIOUS PERSONS
AND CIRCUMSTANCES
BERSERK OR DERANGED PERSONS
(No warning - unprovoked attack)
58
21%
33
12%
55
20%
84
30%
31
11%
17
6%
278 POLICE KILLED
INCLUDES CITY, COUNTY, AND STATE POLICE
FBI CHART
Chart 9
Police Killed by Felons, 1960-1965
Two-
man
cars
One-man cars
Foot
Detective
and special
assign-
ment
Off
duty
Total
Alone
Assisted
1. Responding to "disturbance" calls___
2. Burglaries in progress, or pursuing
28
12
10
21
7
4
9
12
14
32
14
2
7
1
5
6
1
]
4
1
5
6
3
5
8
12
15
5
1
2
0
9
4
1
4
58
33
3. Rol)beries in progress, or pursuing
55
4. Attempting otlier arrests and trans-
84
5. Investigating suspicious persons and
31
6. Berserk or deranged person (No
warning— unprovolted attack)
17
Total
82
*83
21
24
48
20
278
*51 city police officers, 32 county and state police officers.
When an examination is made of the prior criminal histories of
those involved, it is found that 76 percent had been arrested on
some criminal charge prior to the time they became participants
in the police murders and, of even more significance, over one-half
of this group had been previously arrested for assaultive-type crimes
such as rape, robbery, assault with a deadly weapon, assault with
intent to kill, etc. In fact, the records disclose 9 individuals had
been charged on some prior occasion with an offense of murder.
37
Seven of these had been paroled on the murder charge, one was an
escapee having fled confinement while serving time for murder, and
one was an escapee who fled while awaiting trial for murder. Sixty-
eight percent of the 362 persons who were responsible are known
to have had prior convictions on criminal charges and more than
two-thirds of this group had received leniency in the form of pro-
bation or parole on at least one of these convictions. Alore than
1 of every 4 of the murderers was on parole or probation when he
killed a police officer.
The murderers of police officers ranged in age from a boy of 14
to a man of 73. The median age was 27. Seventeen of the slayers
were under 18 years of age at the time they committed the offense,
40 were in the 18-20 year age group and 99 were in the 21-25 year
bracket. Twenty-two were over 50 years of age when they murdered
a police officer and the heaviest age concentration lies in the 20
to 30 age span with the highest frequency being found at age 25.
The national rate for assaults on law enforcement officers in 1965
was 10.8 assaults for every 100 officers. While these assaults did
not always result in personal injury to the officer- victim, in approxi-
mately one-third of these assaults the officer did suffer physical harm.
Further details relating to assaults on police by geographic division
and population group can be found in Table 47. Briefly, this table
discloses the highest overall assault rate was in the East South Central
States with 18.3 assaults per 100 police officers. This was followed by
the South Atlantic States with a rate of 17.8, the Mountain States
12.9, and the Pacific States 10.8. The rate in each of the other geo-
graphic divisions was slightly below the national average.
51am Ettforr^m^nt (^aht of Etiitrs
Ah a Kam ^niammmt ®ff ir^r. m^ funJumeniaf Jui^ u lo
serve ntanhina; to Aafe^uara liueA ana propertu; to protect the innocent aaaindt
deception, the weak aaaindt oppression or intimidation, and tne peaceful
against violence or disorder; and to respect the (constitutional riahts of all
men to lioertu, ee^uaiitu and justice,
11 iUlii heep m^ private life unsullied as an example to ail; maintain coura-
aeouS calm in tne face of- danaer. Scorn, or ridicule; develop Self-restraint; and
be constantiu mindful of tne welfare of otnerS. ..J^onest in tnouaht and deed
in both mu personal and oj-ficiai lij-e, ^ will be exempiaru in obeuina tne laws
of tne land and tne regulations of mu department. lAJnatever ^ See or hear of
a confidential nature or that is confided to me in mu official capacitu will be
Kept ever secret unless revelation is neceSSaru in tne performance of mu dutu.
ll iUtii never act officiousiu or permit personal feeiinas, prejudices, animos-
ities or friendsnips to influence mu decisions. vUitn no compromise for crime
and witn retentless prosecution of criminals, Jj" will enforce the law courteoustu
and appropriateiu without fear or favor, malice or ill will, never emplouina.
unnecessaru force or violence and never acceptina aratuities.
It IT^rOj^tttHi^ the badae of mu office as a Sumbol of public faith, and
^ accept it aS a public trust to be held So long, as Jt^ am true to the ethics of
the police Service. .^ will constantiu strive to achieve these objectives and ideats,
dedicating ntuSeif before \-Jod to mu chosen profession . . . law enforcement.
InUrnnlionBl A»toci«Uon of Chiefs of Police. Inc.
39
Introduction
Background
The Uniform Crime Reporting Program is the outgrowth of a need
for a national and uniform compihition of pohce statistics. This
need was expressed by law enforcement executives many years ago.
In 1930, crime reports were solicited from police departments through-
out the Nation based on uniform classifications and procedures
developed by the Committee on Uniform Crime Records of the
International Association of Chiefs of Police (lACP). In that year
the Federal Bureau of Investigation (FBI), on request of the above
organization, assumed the role as the national clearinghouse.
The Committee on Uniform Crime Records, lACP, continues to
serve in an advisory capacity to the FBI in the operation of this
Program. The assistance of the Committee is especially valuable in
actively promoting the quality of the reports supplied by the cooperat-
ing law enforcement agencies. In this connection, the Field Service
Division of the lACP is also playing an active and effective part in
quality control through surveys of police record and crime reporting
systems. Dr. Peter P. Lejins, Professor, Department of Sociology,
University of Maryland, continues as a consultant to the FBI in the
conduct of this Program.
The Committee on Uniform Crime Records at its April, 1965,
meeting reaffirmed the purpose and objectives of the Uniform Crime
Reporting Program. Briefly, the Committee approved a more
refined collection of robbery by type, a revision in the larceny classifi-
cation, a special nationwide survey on sex offenses, restated its
position with regard to the definition of auto theft, and the format
utilized in the publication of crime statistics.
The Committee at the foregoing meeting and also during the
course of the October, 1965, meeting discussed the need to further sub-
divide a number of the broad crime classifications utilized in the
Program. A detailed breakdown of larceny by type of theft was
developed and introduced as a collection item beginning in January,
1966. While this breakdown of the larceny classification provides
for a better understanding of the nature of this offense, it will also
serve to identify types of theft which could be utilized as a Crime
Index category. The dollar valuation of larceny as presently used
would be eliminated in favor of a collection of larceny by type without
regard to the value of property stolen. The experience gained from
221-746"— 66 4 -11
this nationwide collection of larceny by type in 1966 will greatly
assist in making a determination with respect to this crime
classification.
Committees on Uniform Crime Reporting within state law enforce-
ment associations are active in providing service by promoting
interest in the Uniform Crime Reporting Program, fostering more
widespread and more intelligent use of uniform crime statistics and
by lending assistance to contributors when the need exists.
Objectives
The fundamental objective of this Program is to produce a reliable
fund of nationwide criminal statistics for administrative and opera-
tional use of law enforcement agencies and executives. At the same
time, meaningful data is provided for other professionals with related
interests in the crime problem and for scholars, as well as to inform
the public of general crime conditions.
Specifically, the means utilized to attain these goals are: (1) an
attempt is made to measure the extent, fiuctuation and distribution
of serious crime in the United States through the use of a Crime
Index consisting of seven selected offenses. This count is based on
these seven offenses being reported to the police or coming directly to
their attention. (2) The total volume of all types of criminal offenses
is compiled as they become known b}^ police arrests. (3) Since the
above are also measures of law enforcement activity, related data is
collected to demonstrate effectiveness of enforcement activities,
available police strength and significant factors involved in crime.
Reporting Procedure
Under this national voluntary system each contributing law
enforcement agency is wholly responsible for compiling its own crime
reports for submission to the FBI. Each contributor is supplied with
the Uniform Crime Reporting Handbook which outlines in detail pro-
cedures for scoring and classifying offenses. The Handbook illus-
trates and discusses the monthly and annual reporting forms, as well
as the numerous tally sheets made available to facilitate the periodic
tabulation of the desired data.
The publication of the Uniform Crime Reporting '^Newsletter,"
which was initiated in October, 1963, has continued with issues being
published when pertinent. This ''Newsletter" is utilized to explain
revisions in the Program as well as to present information and instruc-
tional material to assist contributors.
Recognizing that a sound records system is necessary if crime
reporting is to meet desirable standards, the FBI furnishes a Manual
of Police Records to law enforcement agencies upon request. Special
42
Agents of the FBI are widely utilized to encourage new contributors
and to assist them by explaining the procedures and definitions
necessary under this uniform system.
On a monthly basis, city police, sheriffs and state police report the
number of offenses that become known to them in the following crime
categories: criminal homicide, forcible rape, robbery, assault, burglary,
larceny, and auto theft. This count is taken from a record of all
complaints of crimes received by the police from victims or other
sources or discovered by the police in their own operations. Com-
plaints determined by police investigation to be unfounded are elimi-
nated from this count. The number of ^'offenses known" in these
crime categories is reported to the FBI without regard to whether
anyone is arrested, stolen property is recovered, local prosecutive
policy, or any other consideration. Police agencies report on a
monthly basis the total number of these crimes which they clear by
arrest and, separately, the crimes cleared by the arrest of persons
under 18 years of age. Police additionally report certain other
analytical data pertaining to specific crime categories, including total
arrests made for the month for all criminal acts separated as to adults
and juveniles.
In annual reports, ''offenses known" data and clearances by arrest
are summarized by the contributors. Annual forms provide a report
of persons arrested for all criminal offenses with respect to age, sex
and race of the offender, as well as an accounting of the number of
persons formally charged and their disposition. Police employee data
are collected annually, including the number of police killed and
assaulted.
Reporting Area
During the calendar year 1965, crime reports were received from
law enforcement agencies representing 97 percent of the total United
States population living in standard metropolitan statistical areas,
89 percent of the population in other cities, and 75 percent of the
rural population. The combined coverage accounts for 92 percent
of the national population.
Presentation of crime data by areas as used in this publication
follows as closely as practical the definitions used by the Bureaus of
the Budget and Census for standard metropolitan statistical areas and
other cities. There is, however, some deviation insofar as the rural
area is concerned. For crime reporting purposes rural is generally the
unincorporated portion of a county outside of standard metropolitan
statistical areas. In addition, sheriffs' departments or state police
agencies frequently provide coverage for small incorporated com-
munities which do not provide their own police service. These places
43
are characteristically more rural than urban, thus the crime counts
for these places are included in the rural tabulations. In addition,
statistics are presented in certain tables relative to "suburban'' areas.
A suburban area consists of cities with 50,000 or less population to-
gether with counties which lie within a standard metropolitan statisti-
cal area. In this use of suburban the core city experience is, of
course, excluded. The suburban area concept is used because of the
peculiar crime conditions which exist in these communities surround-
ing the major core cities. These metropolitan areas are not rural in
nature, yet neither are they comparable to large cities although they
have many of the problems identified with the latter.
Standard metropolitan statistical areas are generally made up of an
entire county or counties having at least one core city of 50,000 or
more inhabitants, with the whole meeting the requirements of certain
metropolitan characteristics. In New England, ''town" instead of
''county" is used to describe standard metropolitan statistical areas.
These towns do not coincide generall}^ with established crime re-
porting units; therefore, metropolitan state economic areas in New
England are used in this area tabulation since the^^ encompass an
entire county or counties. Standard metropolitan statistical areas
make up an estimated 67 percent of the total United States pop-
ulation.
Other cities are urban places outside standard metropolitan statis-
tical areas. Most of these places of 2,500 or more inhabitants are
incorporated and comprise 12.6 percent of the 1964 estimated popu-
lation. Bural areas are made up of the unincorporated portion of
counties outside of urban places and standard metropolitan statistical
areas and represent 20.4 percent of our national population. Through-
out this Program, sheriffs, county police and man^^ state police re-
port on crimes committed within the limits of the county but outside
cities, while police report on crimes committed within the city limits
(urban places).
Verification Processes
Uniformity of crime data collected under this Program is of primary
concern to the FBI as the national clearinghouse. With the receipt
of reports covering approximately 8,000 jurisdictions, prepared on a
voluntary basis, the problems of attaining uniformity are readily
apparent. Issuance of instructions does not complete the role of the
FBI. On the contrary, it is standard operating procedure to examine
each incoming report not only for arithmetical accuracy but also,
and possibly of even more importance, for reasonableness as a possible
indication of errors.
Variations in the level and ratios among the crime classes established
by previous reports of each agency are used as a measure of possible
44
or probable incompleteness or changes in reporting policy. Necessary
arithmetical adjustments or unusual variations are brought to the
attention of the submitting agency by correspondence. During 1965
17,101 letters were addressed to contributors primarily as a result of
verification and evaluation processes. Correspondence with con-
tributors is the principal tool for supervision of quality. Not only
are the individual reports studied, but also periodic trends for indi-
vidual reporting units are prepared, as are crime rates in descending
order for all units grouped for general comparability to assist in de-
tecting variations and fluctuations possibly due to some reason other
than chance. For the most part, the problem is one of keeping the
contributors informed of the type information necessary to the success
of this Program.
The elimination of duplication of crime reporting by the various
agencies is given constant attention. In addition to detailed instruc-
tions as to the limits of reporting jurisdictions between sheriffs and
police in urban places, lists of urban places by county are furnished to
sheriffs, county police, and in some instances state police organizations.
Uniform Crime Reporting has been taught to all law enforcement
officers attending the FBI National Academy. The Academy was
established in 1935, and there are 2,972 graduates who are still in law
enforcement, over 27 percent of whom are the executive heads of
law enforcement agencies. The FBI also presents this subject to
regional police schools throughout the country.
Contacts by Special Agents of the FBI are utilized to enlist the
cooperation of new contributors and to explain the purpose of this Pro-
gram and the methods of assembling information for reporting. When
correspondence, including specially designed questionnaires, fails,
Special Agents may be directed to visit the contributor to affirmatively
resolve the misimderstanding.
Variations from the desired reporting standards which cannot be
resolved by the steps indicated above are brought to the attention of
the Committee on Uniform Crime Records of the lACP. The Com-
mittee may designate a representative to make a personal visit to the
local department to assist in the needed revision of records and
reporting methods.
It is clear, of course, that regardless of the extent of the statistical
verification processes used by the FBI, the accuracy of the data as-
sembled under this Program depends upon the degree of sincere effort
exerted by each contributor to meet the necessary standards of
reporting and, for this reason, the FBI is not in a position to vouch
for the validity of the reports received.
45
The Crime Totals
Communities not represented by crime reports are relatively few,
as discussed previously and as shown by an examination of the tables
which follow presenting 1965 crime totals for the Index of Crime classi-
fications. The FBI conducts a continuing program to further reduce
the unreported areas.
Within each of the three areas- — standard metropolitan statistical,
other urban, and rural^ — it is assumed that the unreported portion
had the same proportionate crime experience as that for which reports
were received. In lieu of figures for the entire year from those
agencies, reports for as many as 9 months were accepted as sufficiently
representative on which to base estimates for the year. Estimates
for unreported areas are based on the reported crime experience of
similar areas within each state. Certain refinements are made of this
basic estimating procedure as the need arises.
Crime Trends
Crime data for trends are homogeneous to the extent that figures
from identical reporting units are used for each of the periods tabu-
lated. Exclusions are made when figures from a reporting unit are
obviously inaccurate for any period or when it is ascertained that
unusual fluctuations are due to such variables as improved record
procedures and not to chance.
As a matter of standard procedure, crime trends for individual places
are analyzed by the FBI five times a year. Any significant increase
or decrease is made the subject of a special inquiry with the contrib-
uting agency. Whenever it is found that crime reporting procedures
are responsible for the difference in level of crime, the figures for
specific crime categories or totals are excluded from the trend tabu-
lations.. On the other hand, crime rate tables by state and standard
metropolitan statistical area contain the most reliable reports available
for the current year, and care should be exercised in any direct com-
parisons with prior issues. Changes in crime level may have been
due in part to improved reporting or records procedures rather than
to chance.
Population Data
In computing crime rates by state, geographic division, and the
Nation as a whole, population estimates released by the Bm^eau of
the Census on August 27, 1965, were used. Population estimates
for individual cities and counties were prepared by using Special
Census Reports, state sources and estimates, commercial sources,
and extrapolation where no other estimate was available. Complete
1965 population estimates for individual cities and comities were used
46
from 14 states while official sources in other states provided limited data
which was used selectively. The estimated United States population
increase in 1965 was 1.3 percent over 1964 according to figures pub-
lished by the Bureau of the Census.
Classification of Offenses
A stumbling block to a uniform national crime reporting system in
the United States results from variations in definitions of criminal
violations among the states. This obstacle, insofar as uniformity of
definitions is concerned, was removed by the adoption of an arbitrary
set of crime classifications. To some extent the title of each classifica-
tion connotes in a general way its content. However, in reading the
explanation of each category, it is very important to keep in mind that
because of the differences among the state codes there is no possibility
in a system such as this to distinguish between crimes by designations
such as ''felony" and "misdemeanor."
A continuing program is carried out to furnish contributors with
timely supplemental instructions as the need arises in certain classifi-
cations. These are aimed at the clarification of any misunderstand-
ings which may arise and the redirection of attention to the proper
application of classification procedures under this system.
Brief definitions of crime classifications utilized in this Program are
listed below:
1. Criminal homicide.^ (a) Murder and nonnegligent manslaugh-
ter: all willful felonious homicides as distinguished from deaths
caused by negligence. Excludes attempts to kill, assaults to kill,
suicides, accidental deaths, or justifiable homicides. Justifiable homi-
cides are limited to: (1) the killing of a person by a peace officer
in line of duty; (2) the killing of a person in the act of committing a
felony by a private citizen. (6) Manslaughter by negligence: any
death which the pohce investigation estabfishes was primarily attribut-
able to gross negligence of some individual other than the victim.
2. Forcible rape. — Rape by force, assault to rape and attempted
rape. Excludes statutory offenses (no force used— victim under
age of consent).
3. Robbery.— Stealing or taking anything of value from the person
by force or violence or by putting in fear, such as strong-arm robbery,
stickups, armed robbery, assault to rob, and attempt to rob.
4. Aggravated assault.— Assault with intent to kill or for the pur-
pose of infiicting severe bodily injury by shooting, cutting, stabbing,
maiming, poisoning, scalding, or by the use of acids, explosives, or
other means. Excludes simple assault, assault and battery, fighting,
etc.
5. Burglary — breaking or entering. —Burglary, housebreaking,
safecracking, or any unlawful entry to commit a felony or a theft,
47
even though no force was used to gain entrance and attempts. Bur-
glary followed by larceny is not counted again as larceny.
6. Larceny— theft (except auto theft). — (a) Fifty dollars and over
in value; (b) under $50 in value. Thefts of bicycles, automobile ac-
cessories, shoplifting, pocket-picking, or any stealing of property or
article of value which is not taken by force and violence or by fraud.
Excludes embezzlement, ''con" games, forgery, worthless checks, etc.
7. Auto theft. — Stealing or driving away and abandoning a motor
vehicle. Excludes taking for temporary use when actually returned
by the taker or unauthorized use by those having lawful access to the
vehicle.
8. Other assaults. — Assaults and attempted assaults which are not
of an aggravated nature.
9. Arson. — Willful or malicious burning with or without intent to
defraud. Includes attempts.
10. Forgery and counterfeiting. — Making, altering, uttering or
possessing, with intent to defraud, an3'thing false which is made to
appear true. Includes attempts.
11. Fraud. — Fraudulent conversion and obtaining mone}" or prop-
erty b}^ false pretenses. Includes bad checks except forgeries and
counterfeiting.
12. Embezzlement. — Misappropriation or misapplication of money
or property entrusted to one's care, custody or control.
13. Stolen property; buying, receiving, possessmg. — Buying,
receiving, and possessing stolen propertj^ and attempts.
14. Vandalism. — Willful or malicious destruction, injur}", dis-
figurement or defacement of property without consent of the owner
or person having custody or control.
15. Weapons; carrying, possessing, etc. — All violations of regu-
lations or statutes controlling the carrying, usmg, possessing, fur-
nishing, and manufacturing of deadly weapons or silencers and
attempts.
16. Prostitution and commercialized vice. — Sex offenses of a
commercialized nature and attempts, such as prostitution, keeping-
bawdy house, procuring, transporting, or detaining women for mi-
moral purposes.
17. Sex offenses (except forcible rape, prostitution, and commer-
cialized vice). — Statutory rape, offenses against chastity, common
decency, morals, and the like. Includes attempts.
18. Narcotic drug laws. — ^Offenses relating to narcotic drugs, such
as unlawful possession, sale or use. Excludes Federal offenses.
19. Gambling. — Promoting, permitting, or engaging in gambling.
20. Offenses against the family and children. — ^Nonsupport,
neglect, desertion, or abuse of family and children.
48
21. Driving under the influence.^ — ^Driving or operating any motor
vehicle while drunk or under the influence of liquor or narcotics.
22. Liquor laws. — State or local hquor hiw violations, except
^'drunkenness" (class 23) and ''driving under the influence" (class 21).
Excludes Federal violations.
23. Drunkenness. — Drunkenness or intoxication.
24. Disorderly conduct. — Breach of the peace.
25. Vagrancy. — Vagabondage, begging, loitering, etc.
26. All other offenses. — ^All violations of state or local laws except
classes 1-25.
27. Suspicion. — Arrests for no speciflc ofl'ense and released without
formal charges being placed.
28. Curfew and loitering laws (juveniles). — Ofl'enses relating to
violation of local curfew or loitering ordinances where such laws exist.
29. Runaway (juveniles). — ^Limited to juveniles taken into pro-
tective custody under provisions of local statutes as runaways.
40
The Index of Crime, 1965
In this section, tabulations are shown to indicate the probable
extent, fluctuation and distribution of crime for the United States
as a whole, geographic di^dsions, individual states and standard
metropolitan statistical areas. The measure used is a Crime Index
consisting of seven important oftenses which are counted as they
become known to the law enforcement agencies. Crime classifications
used in the Index are: murder and nonnegligent manslaughter, forc-
ible rape, robbery, aggravated assault, burglary — breaking or entering,
larceny $50 and over, and auto theft.
The total number of criminal acts that occur is unknown, but those
that are reported to the police provide the first means of a count.
Not all crimes come readily to the attention of the police; not all
crimes are of sufficient importance to be significant in an index; and
not all important crimes occur with enough regularity to be meaningful
in an index. With these considerations in mind, the above crimes
were selected as a group to furnish an abbreviated and convenient
measure of the crime problem.
It is important to remember in reviewing the tables in this section
that the volume of crime in a state or standard metropolitan sta-
tistical area is subject to the factors set forth on page vii. Estimates
of current permanent population are used to construct crime rates.
With our highly mobile population all communities, metropolitan
areas and states are aft'ected to a greater or lesser degree by the element
of transient population. This factor is not accounted for in crime
rates since no reliable estimates are available nationwide.
50
o (^ ^
5"^ Mas
OO O
CD
^IS
CO >o .
05 O OO
lO t^ -TM
.-I C-l
CO <£>
) GO CC
) O CO
lO 00 i-H
(N CO (M
00(M .
CO CO »o
QOO
iC lO .
lO CO ^
. .00
OOC^ t^
CO .-I .
(MCO-H
. .CO
a> (>4 i-H
(MCO
O (M .
r-H ^ 00
t^ 05 ■«*<
050
-^ CO >o
CD^iO
^ lO .
r- OO CO
t^OO t-
CO o o
— 1 03 .
OO 00 CO
05 (M CO
o o w
■>tl CO o
0000 .
CO CO 05
cc O t^
t^ OO OJ
IM-CO"
Tt< CO 00
c^'co"
c^ o >o
.-Tim"
'rto
(3
I o I G
I 2x3-1
OOO
tJ (33 O
03 .5 a<
S- 03 O
03 I a
11
IS
3S
as
3 C
ag
« p
ga
■—I o
to CJ.
+^ PI
o o
a; O
- 3
Oi
i5 c3
^ (D
.5 -a.
.^13
a "^
51
Table 2. — Index of Crime by Regions.,
[Number and rate per 100,000 inhabitant'^;
Area
United States Total K
Percent change..
Northeast _
Percent change-
New England
Percent change-
Connecticut
Maine
Massachusetts...
New Hampshire-
Rhode Island
Vermont
Middle Atlantic-
Percent change-
New Jersey
New York
Pennsylvania.
North Central
Percent change
East North Central ,-
Percent change--,
Illinois
Indiana
Michigan
Ohio
Wisconsin
West North Central .
Percent change..
Iowa
Kansas.
Minnesoti
Missouri -
Nebraska .
North Dakota-
South Dakotf
South.
Percent change.
South Atlantic 3_.
Percent change.
Delaware
Year
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1985
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
Population
191, 334, 000
193, 818, 000
2, 614, 223
2, 780, 015
+6.3
47,125,000
47, 526, 000
11,070,000
11,159,000
2. 766. 000
2. 832, 000
989, 000
993, 000
5. 338. 000
5, 348, 000
654, 000
G69. 000
914, 000
920. 000
409. 000
397. 000
36, 055, 000
36, 367. 000
6. 682, 000
6. 774. 000
17,915,000
18, 073, 000
11,459,000
11,520.000
53, 370, 000
54,014,000
37, 619, 000
38, 137, 000
10, 489, 000
10, 644, 000
4, 825, 000
4,885.000
8, 098. 000
8, 218, 000
10,100.000
10. 245, 000
4, 107. 000
4. 144. 000
15,751,000
15. 876, 000
2, 756, 000
2, 760, 000
2, 225, 000
234, 000
521,000
554. 000
409, 000
497, 000
480. 000
477, 000
645, 000
652. 000
715.000
703. 000
59, 252, 000
60, 049, 000
28,311,000
28, 714, 000
1964
1965
See footnotes at end of table.
491,000
505, 000
Total offenses
Number Rate per
100,000
1, 366. 3
1, 434. 3
+5.0
Number Rate per
100,000
jMurder and
nonnegligent
manslaughter
9,249
9,850
+6.5
1,607
1 , 693
+5.4
188
235
+2.5. 0
49
46
15
21
105
129
6
18
11
19
2
2
4.8
5.1
+6.3
3.4
3.6
+5.9
1.7
2.1
+23.5
1.8
1.6
1.5
2.1
2.0
2.4
.9
2.7
1.2
2.1
.5
.5
Forcible rape
Number Rate per
100,000
20. 551
22. 467
+9.3
3, 745
4,052
+8.2
623
556
-10.8
152
148
77
43
320
~25
14
25
35
24
26
457, 831
496. 862
+8.5
91,637
94,611
268, 120
290, 647
98, 074
111.604
1, 269. 8
1, 367. 4
+7.7
1,371.4
1, 396. 6
1,496.6
1,608.2
855. 9
968.8
657, 515
085. 720
+4.3
492, 008
510. 729
+3.8
179, 631
171,691
56, 264
59, 493
124,486
142, 563
102, 108
10(),417
29,519
30, 565
1. 232. 0
1, 269. 6
+3.1
1 , 307. 9
1,339.3
+2.4
1,712.6
1,613.1
1, 166. 0
1,217.9
1, 537. 2
1,734.8
1,011.0
1, 038. 7
718.7
737. 6
165, 507
174, 991
+5.7
17, 924
13,498
21,480
29 261
39^ 027
40, 881
67, 877
72, 059
11,008
12. .576
3, 567
3,271
4,624
4,445
1, 050. 3
1,102.2
+4.9
650. 4
706.5
965. 4
996.5
1,108.4
1,150.3
1,539.5
1,602.5
743.8
851.5
553.0
501.7
646.7
632. 4
1.419
1,458
+2.7
207
219
833
833
379
406
1.S46
2.009
+8.8
1.398
1,510
+8.2
572
551
145
171
269
358
350
366
60
64
3.9
4.0
+2.6
3.1
3.2
4.6
4.6
3.3
3.5
3,122
3, 496
+12.0
609
605
1,507
1,772
1.006
1.119
3.5
3.7
+5.7
3.7
4.0
+8.1
5.5
5.2
3.0
3.5
3.3
4.4
3.5
3.6
1.5
1.5
450
+10.
35
36
75
60
51
50
240
300
34
2.9
3.1
+6.9
1.3
1.3
3.4
2.7
1.4
1.4
5.4
6.7
2.3
2.4
.9
.9
1.3
1.6
5.598
6. 387
+14.1
4,228
4.905
+16.0
1, 569
1,706
456
466
1,358
1,669
721
915
124
149
1. 370
1.482
+8.2
137
123
246
204
157
186
661
812
85
76
45
33
39
48
732. 387
759, 982
+3.8
378. 392
398, 900
+5.4
6, 339
6,502
1, 236. 0
1, 265. 5
+2.4
1,336.5
1,389.2
+3.9
1,291.0
1, 287. 6
4.577
4,797
+4.8
2, 313
2,420
+4.6
21
26
8.0
+3.9
8.2
8.4
+2.4
4.3
5.1
6.061
6, 469
+6.7
2,859
3.293
+15.2
36
30
52
Geographic Divisions and States, 1964-65
percent change over 1964]
Aggravated
Larceny $50
Robbery
assault
Bur
glary
and
over
Auto theft
Number
Rate per
Number
Rate per
Number
Rate per
Number
Rate per
Number
Rate per
100,000
100,000
100,000
100,000
100,000
111,753
58.4
194, 705
101.8
1,110,458
580.4
704. 536
368.2
462. 971
242.0
118.916
61.4
206, 661
106.6
1, 173, 201
605.3
762, 352
393. 3
486, 568
251.0
+6.4
+5.1
+6.1
+4.7
+5.7
+4.3
+8.2
+6.8
+5.1
+3.7
20, 971
44.5
36, 230
76.9
229, 262
486.5
172,013
365.0
124, 033
263.2
23, 712
49.9
40, 239
84.7
245. 024
515.9
186, 488
392.6
135,721
285.8
+ 13. 1
+ 12.1
+ 11.1
+10.1
+6.9
+6.0
+8.4
+7.6
+9.4
+8.6
2, 343
21.2
4,468
40.4
55, 010
490.9
32, 595
294.4
34, 803
314.4
2, 964
26.6
4,861
43.6
58, 044
520. 2
33, 904
303. 8
39, 503
354. 0
+26. 5
+25. 5
+8.8
+ 7.9
+5.5
+4.7
+4.0
+3.2
+13.5
+12.6
414
15.0
1,158
41.9
14, 713
531.9
8,793
317.9
5,717
206.7
546
19.3
1,233
43.5
15,959
563. 5
9,188
324. 4
6,157
217.4
75
7.6
307
31.0
3,248
328.4
1,868
188.9
1,054
106.6
40
4.0
302
30.4
3, 541
3.56. 6
1,911
192.5
894
90.0
1,636
30.6
2,498
46.8
28, 278
529.7
16, 470
308.5
24, 133
452.1
2,139
40.0
2,712
50.7
29, 655
554. 5
17,152
320. 7
28, 533
533. 5
43
6.6
75
11.5
1,827
279.3
1,046
159.9
549
83.9
46
6.9
78
11. 7
2,117
316.5
1,224
183.0
587
87.7
162
17.7
380
41.6
5, 880
643.4
3,876
424.1
2,944
322.1
175
19.0
493
53.6
5,486
596. 4
3.893
423.2
2,943
319.9
13
3.2
50
12.2
1,064
260. 1
542
132.5
406
99. 3
18
4.5
43
10.8
1,286
324. 0
536
135.0
389
98.0
18,628
51.7
31,762
88.1
174,252
483. 3
139,418
386.7
89, 230
247.5
20, 748
57.1
35, 378
97.4
186, 9S0
514.6
152, 584
419.9
96, 218
264.8
+11.4
+10.4
+11.4
+10.6
+7.3
+6.5
+9.4
+8.6
+7.8
+7.0
3,812
57.0
5,828
87.2
40, 143
600.7
22,115
331.0
18, 923
283.2
3. 753
55.4
5,845
86.3
42,113
621.7
22,152
327. 0
19, 924
294.1
9.829
54.9
18,701
104.4
90, 277
503.9
97, 745
545. 6
49, 228
274.8
11,073
61.3
21, 238
117.5
97, 235
538.0
107,325
593. 9
51,171
283. 1
4,987
43.5
7,233
63.1
43, 832
382. 5
19. 558
170.7
21,079
184.0
5, 922
51.4
8. 295
72.0
47. 632
413.5
23,107
200. 6
25, 123
218.1
40. 675
76.2
43, 919
82.3
269, 955
505.8
170, 239
319.0
125,283
234.7
41.397
76.6
45, 425
84.1
282, 727
523. 5
175, 741
325.4
132, 034
244. 5
+1.8
+.5
+3.4
+2.2
+4.7
+3.5
+3.2
+2.0
+5.4
+4.2
34, 081
90.6
35,186
93.5
192, 193
510.9
126, 601
336.5
98, 323
261.4
34, 459
90.4
35, 733
93.7
201, 832
529.3
128, 260
336.3
104,030
272. 8
+1.1
_ 9
+1.6
+.2
+5.0
+3.6
+1.3
-.1
+5.8
+4.4
19,123
182: 3
15, 652
149.2
57,416
547.4
42, 744
407.5
42, 555
405.7
17,535
164.8
14, 553
136.7
58, 566
550.3
38, 342
360.2
40, 438
379.9
2.731
56.6
2,977
61.7
23, 962
496.6
15,628
323. 9
10,365
214. 8
2.731
55.9
3, 067
62.8
25, 245
516.8
16, 343
334.6
11,470
234.8
7.113
87.8
9,582
118.3
51,990
642.0
33, 163
409.5
21,011
259.5
8. 432
102.6
10, 669
129.8
57, 951
705.2
37.183
452. 5
26, 301
320. 1
4.663
46.2
5, 848
57.9
47, 100
466.3
24, 901
246. 5
18, 525
183.4
5,286
51.6
6, 221
60.7
48. 199
470.5
25, 971
253. 5
19,459
189.9
451
11.0
1,127
27.4
11,725
285. 5
10.165
247. 5
5,867
142.9
475
11.5
1.223
29.5
11.871
286. 5
10.421
251.5
6,362
153.5
6.594
41.9
8,733
55.4
77, 762
493.7
43, 638
277. 0
26. 960
171.2
6,938
43.7
9, 692
61.0
80, 895
509.5
47, 481
299.1
28, 004
176.4
+5.2
+4.3
+11.0
+10.1
+4.0
+3.2
+8.8
+8.0
+3.9
+3.0
310
11.2
525
19.0
8,004
290.4
6, 274
227. 6
2,639
95.8
354
12.8
554
20.1
8,398
304.3
7,144
258.8
2,889
104.7
623
28.0
1,629
73.2
9,626
432. 6
6,175
277.5
3,106
139.6
537
24.0
1,591
71.2
10,443
467.5
6,685
299. 3
2, 741
122. 7
1,285
36.5
1.108
31.5
18, 833
534.9
11,209
318.3
6,384
181.3
1.433
40.3
1.405
39.5
18, 853
530.5
11,789
331.7
7,165
201.6
3.955
89.7
4,697
106.5
33, 051
749.6
13, 831
313.7
11,442
259. 5
4.195
93.3
5.281
117.4
34,311
763.0
15, 374
341.9
11,786
262. 1
306
20.7
351
23.7
4,832
326. 5
3,198
216.1
2, 202
148.8
324
21.9
416
28.2
5,684
384.8
3,636
246. 2
2,404
162.8
56
8.7
122
18.9
1,546
239.7
1,208
187.3
584
90.5
30
4.6
154
23.6
1,348
206. 8
1,199
183.9
501
76.8
59
8.3
301
42.1
1,870
261. 5
1,743
243.8
603
84.3
65
9.2
291
41.4
1.858
264. 3
1,654
235.3
518
73.7
26, 045
44.0
79, 940
134.9
328. 601
554.6
181,266
305.9
105, 897
178.7
27, 406
45.6
84, 408
140.6
331,768
552. 4
199,611
332.4
105, 523
175.7
+5.2
+3.6
+5.6
+4.2
+1.0
-.4
+10.1
+8.7
-.4
-1.7
14,434
51.0
44, 758
158.1
166,043
586.5
93. 293
329. 5
54, 692
193. 2
16.161
56.3
47,610
165.8
168.871
588.1
104, 833
365.1
55. 712
194.0
+12. 0
+10.4
+6.4
+4.9
+1.7
+.3
+12.4
+10.8
+1-.?
+.4
196
39.9
183
37.3
3,071
625. 5
1,588
323.4
1,244
253.4
277
54.9
142
28.1
3,033
600.6
1,758
348.1
1,236
244.8
63
Table 2. — Index of Crime by Regions,
[Number and rate per 100, 000 inhabitants;
Florida
Georgia
Marjdand
North Carolina- -
Soutli Carolina-—
Virginia
West Virginia
East South Central.
Percent change.
Alabama
Kentucky..
Mississippi.
Tennessee..
West South Central-..
Percent change.
Arkansas
Louisiana..
Oklahoma.
Texas
West.
Percent change.
Mountain
Percent change-
Arizona
Colorado
Idaho
Montana
Nevada
New Mexico-
Utah
Wyoming
Pacific.
Percent change.
Alaska
Cahfornia...
Hawaii
Oregon
Washington.
Year
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1364
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
1964
1965
Population i
5, 705, 000
5, 805, 000
4, 294, 000
4, 357, 000
3, 432, 000
3, 519, 000
4, 852, 000
4,914,000
2, 555, 000
2, 542, 000
4, 378, 000
4, 457, 000
1, 797, 000
1,812,000
12,678,000
12,808,000
3, 407. 000
3, 462, 000
3, 159, 000
3, 179, 000
2, 314, 000
2,321,000
3, 798, 000
3, 845, 000
Total offenses
Number Rate per
100,000
109, 965
116,732
53, 594
52, 271
49,858
60, 464
45, 205
48, 155
31, 081
27, 880
49, 356
51,635
9, 854
9,581
1,927.6
2, 010. 9
1, 248. 1
1,199.7
1,452.8
1.718.2
931.7
980.0
1, 216. 5
1, 096. 8
1,127.3
1,158.6
548.3
528.8
Murder and
nonnegligent
manslaughter
Number Rate per
100,000
518
503
491
229
236
369
388
206
245
297
296
67
8.6
8.9
11.7
11.3
6.7
6.7
7.6
7.9
8.1
3.7
4.0
Forcible rape
Number Rate per
100.000
589
771
529
586
346
489
451
437
258
271
456
483
89
77
125,344
128,072
+2.2
35, 981
36, 972
32, 755
33,431
14.688
16, 034
41,920
41.635
988.7
1,000.0
+1.1
1,056.1
1, 067. 9
1,036.8
1,051.6
634.7
690.8
1, 103. 8
1, 082. 9
18, 283, 000
18, 527, 000
1,933,000
1,960,000
3, 468, 000
3, 534, 000
2, 465, 000
2, 482, 000
10,397,000
10,551.000
31,587,000
32,231,000
7, 697. 000
7, 775, 000
1,581,000
1.608,000
1,966.000
1.969.000
692, 000
692, 000
705, 000
706. 000
408, 000
440, 000
1,008,000
1,029.000
992, 000
990, 000
343, 000
340. 000
23, 891 , 000
24, 456, 000
250. 000
253. 000
18, 084, 000
18, 602, 000
701,000
711,000
1.871,000
1.899,000
2, 984, 000
2, 990. 000
228, 651
233, 010
+1,9
14, 688
14, 503
42,418
41,840
29. 844
28. 543
141,701
148, 124
636, 460
697. 384
+9.6
118,463
118,906
+.4
32, 693
31,108
30, 552
30,407
6,145
6,417
7,845
7,643
11,387
10, 541
14,304
15, 582
12,196
13, 803
3.341
3.405
1,252.0
1, 257. 2
+.4
759.8
739,9
1,223.1
1,184.0
1,210.7
1, 1.50. 0
1.363.0
1,403.9
2,015.0
2,163.9
+7.4
1. 539. 5
1, 529. 6
-.6
2, 067. 8
1. 934. 5
1,554.0
1,544.3
888.0
927.3
1,112.8
1, 082. 7
2, 790. 9
2, 395. 7
1,419.1
1,514.4
1,229.5
1, 394. 3
974.1
1,001.6
517,997
578, 478
+11.7
3,506
4, 326
438, 399
491, 713
11,083
13, 438
25, 073
28, 235
39, 936
40. 766
2, 168. 2
2,365.6
+9.1
1,402.4
1,709.9
2, 424. 2
2, 643. 5
1,581.0
1,890.1
1,340.1
1,486.9
1,338.3
1,363.4
1,077
+14.8
316
395
164
168
233
207
225
307
7.4
8.4
+13. 5
9.3
11.4
5.2
5.3
10.1
8.9
5.9
8.0
1,326
1,300
-2.0
147
115
287
285
110
110
782
790
7.3
7.0
-4.1
7.6
5.9
8.3
8.1
4.5
4.4
7.5
7.5
1,219
1,351
+10.8
332
300
-9.6
83
80
82
69
28
14
19
12
32
37
54
63
15
. 15
19
10
887
1,051
+18.5
26
16
740
880
15
23
34
65
72
67
3.9
4.2
+7.7
4.3
3.9
-9.3
5.2
5.0
4.2
3.5
4.0
2.0
2.7
1.7
7.8
8.4
5.4
6.1
1.5
1.5
5.5
2.9
1,204
1,161
-3.6
397
367
254
209
217
160
336
425
1,998
2,015
+.9
157
203
384
394
269
275
1,188
1,143
5.147
5.559
+8.0
998
1,030
+3.2
259
286
336
318
41
38
53
55
54
68
120
138
100
88
35
39
4.3
+16.2
10.4
6.3
4.1
4.7
2.1
3.2
1.8
3.4
2.4
4,149
4,529
+9.2
56
45
3,621
3.948
18
6
225
226
229
304
1 Population for each State for 1964 and 1965 is Bureau of the Census provisional estimate as of July 1, and
subject to change. All rates were calculated on the estimated population before rounding.
- Offense totals based on all reporting agencies and estimates for unreported aieas. Aggravated assault
54
Geographic Divisions and States, 1964-65 — Continued
percent change, over 1964]
Aggravated
Larceny .$50
Robbery
assault
Burglary
and
over
Auto theft
Number
Rate per
Number
Rate per
Number
Rate per
Numl)er
Rate per
Number
Rate per
100,000
100,000
100,000
100,000
100,000
4,958
86.9
10, 503
184.1
54, 959
963.4
26, 692
467.9
11, 775
206.4
5,146
88.6
10, 951
188.6
55, 556
957.0
31, 728
546. 6
12, 062
207.8
1,445
33.7
5,808
135.3
22. 706
528.8
12, 654
294.7
9,949
231.7
1,297
29.8
6,403
147.0
21. 236
487.4
13,828
317.4
8,430
193.5
2,041
59.5
4,830
140.7
18, 735
545.9
14.410
419.9
9,267
270.0
2,919
83.0
6,388
181.5
22, 474
638.7
17, 191
488.5
10, 767
306.0
1,034
21.3
10, 264
211.5
17, 922
369.4
10, 253
211.3
4,912
101.2
1,062
21.6
10, 635
216.4
18, 610
378.7
11,732
238.8
5,291
107.7
658
25.8
3,104
121.5
14, 106
552.1
8,586
336.0
4,163
162.9
545
21.4
3, 428
134.9
11,885
467.6
7,741
304.5
3,765
148.1
1,462
33.4
6,533
149.2
20, 746
473.9
13. 300
303.8
6,562
149.9
1,715
38.5
5,968
133.9
21, 540
483.3
14, 366
322.3
7,267
163.1
303
16.9
900
50.1
4,818
268.1
2,267
126.2
1,410
78.5
261
14.4
1,003
55.4
4,600
253.9
2,310
127.5
1,258
69.4
3,756
29.6
13, 471
106.3
57, 676
454.9
32,148
253.6
16, 151
127.4
3,593
28.1
13, 830
108.0
56, 992
445.0
34, 692
270.9
16, 727
130.6
-4.3
-5.1
+2.7
+1.6
-1.2
-2.2
+7.9
+6.8
+3.6
+2.5
992
29.1
5,555
163.1
15, 627
458.7
9,415
276.4
3,679
108.0
992
28.7
5,162
149.1
16, 119
465.6
10, 235
295.6
3,702
106.9
1,140
36.1
1,928
61.0
14, 571
461.2
10, 172
322.0
4,526
143.3
1,167
36.7
1,919
60.4
14, 140
444.8
11,006
346. 2
4,822
151.7
476
20.6
3,192
137.9
6,157
266.1
3,143
135.8
1,270
54.9
334
14.4
3,248
139.9
6,626
285.5
3,664
157.9
1,795
77.3
1,148
30.2
2,796
73.6
21, 321
561.4
9,418
248.0
6,676
175.8
1.100
28.6
3.501
91.1
20, 107
523.0
9.787
254. 5
6,408
166. 7
7,855
43.0
21,711
118.9
104, 882
574.3
55, 825
305.7
3.5, 054
191.9
7,652
41.3
22, 968
123.9
105, 905
571.4
60, 086
324.2
33, 084
178.5
-2.6
-4.0
+5.8
+4.2
+1.0
-.5
+7.6
+6.1
-5.6
-7.0
565
29.2
1,772
91.7
6,436
332.9
3,898
201.7
1, 713
88.6
465
23.7
1,879
95.9
5,723
292.0
4,552
232.2
1,566
79.9
1,849
53.3
4,620
133.2
16, 730
482.4
10, 539
303.9
8,009
230.9
1,813
51.3
4,686
132.6
15, 983
452.3
11, 521
326.0
7, 158
202.6
1, 038
42.1
2,100
85.2
14, 047
569.8
7,399
300.1
4.881
198.0
942
38.0
1,928
77.7
13, 089
527.4
7,482
301.5
4,717
190.0
4,403
42.4
13, 219
127.1
67. 669
650.9
33. 989
326.9
20, 451
196.7
4,432
42.0
14, 475
137.2
71,110
674.0
36, 531
346.2
19, 643
186.2
24, 062
76.2
34,616
109.6
282, 840
894.8
181,018
573.1
107, 758
341.2
26,401
81.9
36, 589
113.5
313,682
973.3
200,512
622.2
113,290
351.5
+9.7
+7.5
+5.7
+3.6
+11.0
+8.8
+10.8
+8.6
+5.1
+3.0
3,694
48.0
6,274
81.5
50,127
651.4
37, 396
486.0
19,642
255. 3
3, 308
42.6
6,533
84.0
49, 948
642.5
39,452
507.5
18,335
235. 9
-10.4
-11.3
+4.1
+3.1
-.4
-1.4
+5.5
+4.4
-6.7
-7.6
967
61.2
2, 059
130.2
13, 726
868.2
10, 251
648.4
5, 348
338.3
895
55.7
1,831
113.9
13,129
816. 5
10, 267
638.5
4, 620
287.3
1,323
67.3
1,378
70.1
13,367
679.9
8, 734
444.2
5, 332
271.2
1,073
54.5
1,547
78.6
12,817
651.0
9,087
492.0
4,896
248.7
71
10.3
397
57.4
2,285
330.2
2, 653
383.4
670
96.8
70
10.1
371
53.6
2,483
358. 8
2,733
394.9
708
102.3
110
15.6
382
54.2
3,328
472.1
2,537
359.9
1,416
200.9
112
15.9
335
47.5
3,197
452. 9
2,534
359.0
1,398
198.0
448
109.8
449
110.0
4,416
1,082.3
3,879
950. 7
2,109
516. 9
429
97.5
419
95.2
3,863
878.0
3,802
864.1
1,923
437.1
466
46.2
914
90.7
6,471
642.0
3,931
390.0
2,348
232.9
439
42.7
1,329
129.2
7,216
701.3
4,134
401.8
2,263
219.9
263
26.5
510
51.4
5,233
527.5
4, 065
409.8
2,010
202.6
229
23.1
554
56.0
6,008
606.9
4,845
489.4
2,064
208. 5
46
13.4
185
53.9
1,301
379.3
1,346
392.4
409
119.2
61
17.9
147
43.2
1,235
363. 3
1.450
426.5
463
136. 2
20,368
85.3
28,342
118.6
232, 513
973. 2
143, 622
601.2
88,116
368. 8
23, 093
94.4
30, 056
122.9
263, 734
1, 078. 5
161,060
658.6
94, 955
388.3
+13.4
+10.7
+6.0
+3.6
+13.4
+10. 8
+ 12. 1
+9.5
+7.8
+5.3
53
21.2
240
96.0
1,109
443.6
1,137
454.8
885
354.0
101
39.9
215
85.0
1,403
554.5
1,516
599. 2
1,030
407.1
18, 667
103.2
24, 998
138.2
196,883
1,088.7
117,703
650.9
75, 787
419.1
21,081
113.3
26, 581
142.9
225, 007
1.209.6
132, 443
712.0
81,773
439. 6
95
13.6
447
63.8
5,880
838.8
2. 825
403.0
1,803
257.2
133
18.7
329
46.3
6,974
980.9
3,392
477.1
2,581
363. 0
703
37.6
1,047
56.0
10, 727
573.4
8,447
4.51. 5
3,890
207.9
873
46.0
1,126
59.3
12,079
636. 1
10,020
527.7
3,846
202.5
850
28.5
1,610
54.0
17,914
600. 3
13.510
452. 7
5,751
192. 7
905
30.3
1,805
60.4
18, 271
611.1
13, 689
457.8
5. 725
191.5
total does not agree with the number pubhshed in 1964 issue due to statistical adjustments resulting from
new reporting procedures initiated in 1964.
3 Includes the District of Columbia.
55
So O
S
a
^
^
-H CM
CO CO
»(M DO
-CO
o o
(M CO — '
COO co-^ coicaso
lO lO ^ lO o --< ^ .
O 00 03 lO
GO 5b ^ o
;co3
lOCO^^ 35
T-H lO r-H
om o
O O CO Oi TJ4 ^ <
o oj JL t:
=s<
OD O IC >0 00
00 (N«) 00
rM rt TJH lO<
.5COCOt^O(MSiO<M
■ OOOiOCOOCOCOOCO
C3 M
S.9
P->iO
® 3 ,_
2s'
8
£-3
OOOOOTfHOO
t^ocooooc^ooo
t^ O t^ O lO 35 O O
^ -H ^ ^c^ — ice
<D O-
43 a
a>>
'^ c3-j^
S'3
i^l^s-
56
o --^ ooeo OS
lO CD o -^ eo <
t^ 00 l^ t^ t^
■<** Tj< CO CO »~- c
(N <M rH rt .-1 -tjt
^-^ 05 t^ 1-1 o« (M
(MC^ ^
•O IC <M t^
:^ 8^ 2:
feS^S
ss
i^S3
55S3§g
fe
Tt< CD
§8
oO'S^r-o
(Nco-
-'
^""^
Si
OO-QO"
-'-l:^
o~
--"
r^^'c^'^
00 CO O l^ o
I -—I Oi lO ■^ .
I ^1 1— I O^ »0 00
core •^co
00 00 -H CO
■■ti rt< 00 .
CO CO O CO
lOlO '"'
CO »0 CD
O C^ O CD (
CDO ^00
OSO
O 1-1 1-H O) CD CO eo CT>
<M t^ lO (M (MOO.
1-1 UO i-t lO (M Ttno 05
<M CO ^ CM •^ I>.
00 i-H 00 00 »^ CO
00500000000
<0 lO-H oo .
>o f"
iO -kOnPO kO>
o oc
iO~05 o ■
00 ^ -H ^CD
OOOOOOiOOO
oo'o' (^"'o o -^'od o oT
1^0(MCT>OCDC^O«0
CO ^ (M --H CO T-i 05
C3 bC
^-1
» 3
isH +J ^iS M +^
^ 5 3 Is
"cSn-!
S ;5
c3 bfl
S.9
2-3
.2 2"^
is g-o
ct- 3 o
CO O tf 5o
I s
S o
J3
cS bO
o '-'
.5 i.s
Cr^ CO.
CO O Ph m
go
is 13 -3 , .-
CO O P^
S
221-746° — 66 5
57
<D C a)
o C3 >
O ■* OC CJ
0503 ^ -H
IM t~OC
•c CO .
CD •<*<
IC O 00 •-I »^ to
(M CO rt CO -H lO
t^ Tfi m t^
co" to >o !»
CO OS I^ t^ O "5
t^ CC CC -f CO .
l^ -H CO O •^ 00
,-1 Tf ^ to 00 -^
CO "5 CO <-i OJ ^.
C^ CC lO iC CO !>•
oo ^^
C C5 CO to
O (M rt< .
-.CO-.0C
OO "3 00 (N CO to CO O
O rt .-1 QO -^ OO .
lO to O5C0 00 -^ •^ t^
(T) C^l CO >0
u
ITS c3
OS c
•"S o
octc coco -hM-HCO
Tr lO -^ >-< »^ CO
2
a
C/3
c;
^
.R
^
M
PN
-c
s
CS
;;.
--1
u
1
"S>
^
H
R
•§
S^
ff
m
1
ec
«
-fi
1=1-1
CO CO CO CO (M C^l <
o — »c to CC -^ '
CO CO -HI
lO t^ UO X
to o .
to urs t^
CO CO c« o
l^ 05 eo .
r-Tco'co'c
CO CO o t^ t^
lO CO T-^ 00 ISt <
CO lO lO 00
ififiifi
c c: 35 ci c; to" c >o
iCCC^OCOOICO
CO ^ rt ,- rt iO
OiCOCiTfOOCOC
2^
)§ "1 .2 "I "S
s 1 '^ .2 'i "^
3*3 i s'S
2 tt
C3 M
^13 —
cs s^ c/- fcH K i t^ X Eh =5
S|"5
£-3
£ 3 I
SS
« w
58
,-1 ,— 05.
'O CO
O (M
CO ■* (M ■— I
< CO 00 c^ <
■ODCO C^OfMfM
O C^ 00 C^ CO C£
o 00 c5 o CO ^'
» „ ., ^ .CO
C-l (M rt ^ CD CO
C^ 03 O
CO CO OT 00 CD .
r^ o CO 05 »o o
o c^ -^ Tt< o; C2 "O 30
Tf 00 lO (M (M CO "# .
too coo lO uo (M O
oo" oT CO* co' ci M* in ic
00 05 05 CO
- CO o
O (N I^ O^ CO
CO CD (M iC 1^ .
^ ^ ^ --H CO CO
lo as Oi lo c; a: CO I
lO O O '
>0 00 35 O I
O CO lO CO <
o
t^
^^
^-HiOOO
^"IS
CO
coco
-^"^-
ZC-
CO t- o .
t^CD
coco
■^ Tfl
--^o.-
00
lO lO
CO (N ■*
rHT:t< 00 --I
O CD « .
(N Tjf CO CO
lO co''^co
03 LQ CO CO ■
O kOO Kp= NpO
o o o o o o o
TtTcs i-To CO o -H
t^OiOOOOO -H
lO rt rH rt t^
OOOl^OOOOOO
o o oT 00 o CO TtH cj oJ
OOiOOSOCOOOCSOS
O-^OOOOOTtiOO
co' lO O CO O O TjTo O 'dJ'
00050^050Tt<000"*
Q NPtvOQ i^Ot^OO bC^OO
CDOOO-^IMOiOOSC
t^a30<Mc»oooc5c
■Pes
3
o
w .:
< 1
H C3 M
O rt
? cSr^ C3.S
1§^
03 M
la
05 3 <p
'^C3^T3 03^ ,C3^^M
t3
S o
O i-i 03
at*)"!
o
a
1'5
J-OJ+jCJOJ-tJ 05+jO-
COJ-M >-iC« l(-iKltw —
a
M O
05 +j
03.Sf^c3.5 |c3.5i2
a5+jU05+J 05+jO-
^ I/) Si en I ^ coFh
£ S I
o rt w
59
C<3 cc
o ce >
^o c
• t- C-) -r CD cr.
. , . . .-^
OCX ■ -<CC
OC CO -^
' --" ao cc
(M (M r- IM rl< -^
18
«r O 'i* x
(M CO >0 .
'^ C3 C
t- o; CO OC
-:f ■^' CO co'
CO iC iC
g§
':z c^ :=: cc ^ <z: ^ (=^ o
crc-^occ^cr. O'
C:CCC--O(N0CO(
C-- — cc ^ r^ — I
JTrroc: — ocicoo
1-'' -^ C CO* -^ C ^' Ci C OS
t-c-. coxcc^ot-
II
o _ . _
V ar c3
,2 ^ , >- t^^
S c
I'g ilr
^1
"2 «> ' ^■-
3 .J P O
g ^ J c, ^ " -S
- ^
>-.c
3o
l^l^^'l
2 ce
o
p
S c
^1
5 «
-s ii
GO
t^ 00 CO O
«)•<*< (N CO
O OOO CO
id r^ »o .
OOO C005 CnCROi.
CO-* <M (M T-H ,-1 OO O
>OCO
00 O 00 o
lO 00 o o
(N ro CO 00
CO CQ t^
-CM
IM O <M OS
rt ■* rt CO OS <M
(N IM rt -H
lO O 00 !-(
C<l CO 00 ^
00 05 03 1— I nj< OO
(N CM CO
CO O CO 01 (
t^ t^ ^+1 lO (M Tt<
1-. i-H CO O
CO CO CO
o ^ ^
CO (35 ^ rt
CO ■* CO 00 05 O
lO UO CO CO^H .
Oi CO
?5S
O 1—1
C^' CM-
CM CM >
03 CM r^ ^ O •*!
d CM (M lO
: 0«0 t^
I CO CO .
(M CD
CO CO C^ CO
l^ >— I 00 Oi t^ o
CO CO lO Tfi CD
05 05 O CO ■^ C
rHr-T CM'cM-O-t
t^ T-H CD CO ^
JOOOOiOOOiOOO
COOO-^OOCCOO
lr^cD003<350l--OOOeO
t^(350COC^O-*C500i
CM •-< CO r-1 CO rt Oi
O T^OO -nPvOO vPv.OO
o S^o ^&-o e^&^o
OOOCMOOt-OO
I ^ ,-1 rt lO
l^Pls?'2^P2^po
^ CD
•■^ c^^ '■^ a I "•'^ p rt
ce .5 r: 03 .5 ! 03 .5 -2
>-■ tfi , 1-1 m^' >- wf-l
^H fe<!^H c3<i1M a)
O Ph M
^1
>?o
3 I d'S
+J c« -i-J ^
03"3 C3 cl
TJ a
.^H^
'3 ^3
§ 'i "S .2 "i
'g 03 .5 r"^ <S
w
CO
O tf
61
(M>0 (MO -hCtjO
•O t^ to GC O -< » .
<N CM »0 lO CO CO -< -^
. . .o
Tf t^ cs -^ o ■
(M CM lO t^ — I
lO CD Ttl lO -H (N
r-H — c CO CO »^ Tfl
1000 COOT cccMosr^
en CM Tf< ao CO t^ CO .
^^CM COCO -^-^»~.-i
ci "3
00 (N
00 O CC O Oi lO
. . > . .0
CM CO CC <0 t~ t^
00 00 CO 05 eo »o
>0 03 05 lO lO .
CM CM O -H QO O
•O lO -H .
IC -^ TJ< -^ -H CO <M
000 CM O rfi >C » irj
» . « . .00
— CM CO CM CD C^
lO lO CO .
t^ t^ CD O
cc o o »o
IC t^ (M C5
. .CO
-H eo ^
^ •-': — o
1- C5 <£ t^OiOZ
'~t>. CMO wCOOO
— ' ^ CM CO -^ — CD .
o C5 C , 2J
5 C O) " =«
tCC C5 i-" CO .
3 >— I CM CO "O Tf
. . . . .CO
»C CC CM CM (M t^
^^
is
3,702
3, 819
10, 881
150. 3
11
m
t-CO'S'QC
cooc 00
'^:r-
COCO
— C>1
^-tc
I Iff!
C: 03C t^ 0><
;?5^S;
Ct^OOCSCCOCO
^'05 o t^'cc O I
00 05 O •>*' 05 O I
C vCvCO vCkCO kCkCO
T-^'-c d lOco o 'o'co o <-r
iCCCO— 't^OiOCOOCQ
CM T— r^ --I CO 1-1 eo
i£^
§"§■§
CS-r-
- c3.5r~
SI
|i
II
< '
O
w
W ^
fe -^ .
c •- ra
'2 cS.Sp" C3.5
CS !_ K • -'
K c
CS.S- «
_ . OJ *^ O *;
o 3 o
t-- -u i2 c
^ ?e 2-'
3 o
<a
iH m J
3 c3
62
C^ O CO o> I
(M CS CO 00
(M CO O "O ^ O
n<S> lO CD CO .
t^ t^ r^ r^ lo 05
rt --H (M "O CO
OO lO O CO "O .-c o
O LO 00 OJ t^ CO -< .
050 03^H t^-HCOCO
00 03 05 OS "-I I
CDOO t^OO
^'>OCO
CO >o a> o
^ - --^?5
CO "O Tt< ■* Oi 05
O 00 Oi ^ (M lO ■
eo CO
CD CS 05 lO
Tj< t^ u:5 .
^ CO CO 05 O (>1
CO O O 00 ■^ t •£?
CD "O 05 CO •>* .
(M Tt< r-i (M to (M
O lO CO lO
00 o >o ^
00 OO ^r-^ rt(MCQOO
O 00
IM CO
O lO
OiOOOCDOO'-HOO
lo 05 o csi CO <
OOOCOOOOOO
io~o cd'c^ o 'O'oo o to
C000050C00500
1-1 r^ C^) ^ CO ^ t^
OOOOOOOOOCDOO
I O <M O O ^ 00 O I
I O <3i 05 O t~- 00 O 1
M <
o -n
^ 03 M)
a» 3 (u
3
CO +J -
o§-^
^2
B ^
CO <J
1 u
Sort
Bco
P.>>o
1 ^^3
^1
5^
^2
<D +j U p '-^^ ■ i> +j o
S-. tn , j^co's^cogH
5 3 ^
63
o C E
« « >
?eO c
-3^
05 CO <M CO — ■
CO CO —i(C
— I CC — (N
«o CO ca —
<r c o .
— <N CO -tf
ic <c — I C«(
;?5 i:
:0 -rf o I
co'co"
CO ^ c^ CO r^ ■
C-1 — C^ OC o ■
t^ -.C (M CO — I •
O iC C rf (
CO T X t^
t^ O CO >c
OC c; t^ t^
i
I ^
t
3
— ' — X 05
c; c^ CO CO o C5
cc X ^ ^ § a,.-
iC IC Oi c^
O C C , i;
r^ CO
x'cs
C ^ X ^ Tj< IC
— . CO — ic 00 .
vC^SQ^Ci.CO
g^g^^g^S
CM — (M
— '-oco'occ'tico
ce t£
o 3 S
5 I ^ .'i: g
S-c
SI
-5
'5<;k a3<&i:'c3
5 x: s
S O*-' © -J
C3 tC
So-
Sl^
»3 c/j -
64
O eo 05
CO (M OJ
CO m -^fi GO <M t^
lO in 05
CO (N .
00 eOfO
CO »o o
CO eo .
lO 0« GO
(M C^ i-H C^.
> c^ eo .
) CJ (D O
rco*o?5
CD-* -^lO lOCOOlO
t^ 00 CO lO >-^ O) «D .
COCO ^^ r^ C^ O -^
00 03 O CO
lO CO ^ •* I
O CO t^ 05
r^ ^ CO .
^ CO 00
L005 '#.— I (Nicmo
O ■* CO t^ CD CO >o .
^ CO (MOO >-i05^HO
IM (N rH rt
O T— ' CD ^H OO 05
CO CO ^H CO (N 1— I
•* O UO tN O O O <
T-H O (N Oi O 05 O <
COr-ITt< ,-l(N ^<
icotit^ocooeo
r-HOCDOSOOlOt^
O C-l O O M O O CD O C
O kPOvOkPO >
(MO'OCOO'OCDOOl
i^oo5a50ooooo>o
1-- i-l i-H CO .-(CD
o ®
11
Sq o
<1H
c3 bC
S3
11
;:2 a^
S o a> o
03 bC
S.H
II
O ^ «
O ;^ -tJ
>.-§
""S
J;S CD -u U Oj +->
ra t- trj tj cfi ^ !_ i/j I
'g^i^H fe^^H 2<;h
^ o tf
^.9
o '-'
-3 ig-o
fc_^ +j en +j ^
65
So o
ccoo r^^>
<c [~- ceo
(M CO O t^
lO CO lO Tfi -- <M CS lO
-H CO -rfi lO CC 00 05 .
00 00 l^ O t^<M^C
O 00 (M C<I Oi -^
• (M ^ OJ eo lO
IT}. lO Oi
^00 -^ CO IM t^ C
CO Tfl 'Ji t^ C^ O (
<M (M (NIM CO^<
C5 O — I o CD ;
05 — I (M CO (M
r- o -^ -H
C5 IM
c^ >-o c^i o >n c
d »0 OJ CO
iC O -H OCCtO C5
tP (M C^ lO «5 <M .
sec
CO IC (M 05 Ci C2 •^ OC
^ , , . . . >CO
C3 -H OC' 00 .'J' IC' «o o
»o O - - _
CC Tf (M C-1
(M 00 ■■ -
•^ CO >o C
C ^Cv^C K?v^C kCvO<
c e^e^o e^e^o e^tNc
cc ■
d "f e
o2«
■oc — c o
5^fi^fii:fi
^ t^ -^ ■
C5ScC^S-^CCO(
C3 tC
it
c s-fi
o g
|>,-S :>>
^3 03
1^ +j -ii cc -k^ ^
I 5
CO C
O o
o S
I® l^
i- c3
50 ©-iS
s
c
213
66
1-1 CD GO 05
?3?S
05 (N OO CO C^
■*eo 00 CO
■* 00
00 CO
o ■*
^ — I ^ t^ CO
IM (M r^ rt >0 CO
CD t^ -^ CD CO iC
r-( -^ lO CO CO >0 (M »0
O 00 00 00 O CO CO .
(M »0 rt •* >0 »0 CD CO
00*0" C-fcN ■>*'"■<*<■»-■■■*
^^' S
t^ r-^ 05 rt< m CO
iC C^ 00 ^ tX) .
O tc CO t^
Ol (M rt (M '
OCO 1005 r-HCOkOO
CO 00 ^^ (M C^ CM <M
00 C-; en CD ^^ ■*
t- 00 CO t^ Oi .
^ ^ (M — .
^00 CO CO
O CO CO »o o
oo
t^ CO
o>o
CDC) 02 OS
T-H Ot)<00
C^ 00 o .
CD 00
SSt^
I^ (M t^ CD
oT-'^" c5 CD 00 o lo'as co o
OOOsO^OOOt-hOSOOI
O r-H 05 I— I lO T-l «C3
OOOCOOOOO
rt rt r-l >0
I O O OS <
) O 00 t^ c
>j o
^ 1:^ -^^
CD-SU p
o '-'
i— I -u M
>>■§
<B 1 O
tf
w
^5 03-^ ce.S
cS.Sr C3.S
i O tf ^
'2 c«r^, 03.S
OD O tf 3o
>>-s
8 ^
(MO OX iC O OO I
0> CC t^ CO _ — o
—I CO -5^ ar — -^ ■«*< <
cc fc eo <N
CO -^ ^ .
ic t^ «D cr
g i^
O 03 >
t^ lO -< t^
CC Ol^H (M
t- O eo
OC X Oi t^ >0 Tf
cr (M CO ic Tji .
— CO 00 cD-c;
GCOO
•* CO
c ^o
t^ ^ c; oc t^ c
CC (N iC ^O .
cc (N i:c CO ^ CO
GCiC ^(N
oc
<M (M X Ci -H ,—
OO IC ^ o .
CO ^r CM C5 >o —
C: ^ C CO -^ c
— CO -^ -^ >o .
X X
CO TT r- o -^
X Tf u^ o .
t^ i-O (MX
co'-<a-'
— CKM c:
ic c eo .
— (M •^ c^i
-X t^ CO o
X -*• (MX
(M t^ IC iC
X X
-Cm?
• Co'
' c3 C
— X — (=.1
TT X
r- C£ <M<
c —
<-t^'? t^t^Q b^i>S-5
(Mcocccioor^xo>o
gcr-0|cr-cic(Mc^
S i>?-bi-£ l>i-!N?-Q t^bS2
o) 3 5
" ;- u3
2-3
.11
:3?i
u s-^ , _ . _
H c(3 iac
isio
30
5 ^
W -J OJ 1
'^<^^<^^^<i^ „;
t^ ;« u: ;m 1/2 ' \^ tn^
68
O CO >o O Oi o
■^ t^ -H ^ CO .
(N (M i-H i-H eO 00
O <M »^ ^
CO OO OJ cc
Ci(n 05 05 CO ^ l^ ^
CO CO
CO O lO 00 00 -
<M CO (M C^ (M C
T-H IM CO CO ^ O
) ^ to CO
I O CO .
) iO eo c^
I r-H «# CO
O 05 t^ O -"tl O 05 00
— I -^ --l O --1 -^ oo .
•«f ■>*< CO Tf< t^ CO CD t^
O 05 (M (M rt t^ CO -rf
ci ^ as-* o »o
CO lO -"ti ■* eo t^
■O 'OOO .
00 00 IM-*
O C35 CC lO O CO
^ OO O ^ •<*' .
^ CS •* ^ ^ CO
. ^ > . .00
C? C^ (M Ol — I ■*
_ ^ ^ ^ c.,
r-l I— I m ^H
OO -^ CO CO (M ^ ■*
»0 O Id O O 00 o
(M(M OIC^ !N<M00O
^ C^ C^ O "O
^J •* CO CO lO IC
lO o ^ ^ ^ .
.-I .-H ^ !-< t^ CC
CO t^ t^ t^
^ ■* CO o >n CO
lO C5 r-( -H CO 00
■* Tf C) (>) OO .
^ — I Tf O
t- t^ OO C2 "O 00 rt< C^
C-; c^ c^ c-1 ■* Tti o .
O O ^ C^l 1^ (N
(N lO CO lO O •*
lO Ttl ■<*< lO o .
00 CT> CO CO CO 05
OS »0 T-l >-l lO lO CO
Cq T-l ■* rfl CD W .
lo o Tti CO CD ee CO
05 lO lO CD CO •-• ,— I
T-H IM 1-1 (
I l^ CO
. . >cO
lO O CO
lO (N ■*■*>« 00
rH o 02 (>i cr> i>-' oJ o t-'
030ooa50i--a50'0
CO " ■* .-1 lO ,-1 ■^
ggs
CR CO O CO CO O O
CD OS O .-I 05 O Oi
■* ,-1 CD i-H 03
Ot^OOi-HCOOOO
W c3
> m
II
o;r3 ' i:^ +^
3
SIGH'S
o <
Bo
O ^5
cc o
"P CS.
CO
- ■ S'O
03 5 '3
m O tf
C3 M
5.S
G>.0
«» 3 £
, c -^
l.ti o
--^ cS.S
<D<! WS-
S 3
S 5
69
OO CO t^ — C» lO
CC — CO — CO .
C5C 005 <CC^1 —llO
— I 03 (M t^ lO iO <M .
C-1 !N t^ t- — CC •^ — '
CO CO — •
r- t^ — I '-
CO to 00 o> >o CO
GO CO <M 35eO .
OO CT> (M IM (M CO
(a ^ (M oi
|(C Tj< — b- 05
§ C O -" C3
0> 35 CO -^ CO CO t~ .
C5 -^ ^ CO
8l, = ir-b
c X c; c; ^' i
S <
ffi C3 &£
la
^
^1==
T^ cs.
5«
fa
cc ' I- cc
1 1 gf I §5^1
'Z X Ti-' d c^' ■^' o o"
'^OCSOCOt^O'^
cs O
I c3 S^
c
c
<S i- u- I. tr. ^ t- y: Eh
3
C2.3
rCB-B
3 ®
e F
r«e
c3^ .
® > 3 t*
"^ C! O ^
_t2 3-^ ©
^ K ^ 3
o c o ©
70
ccoo
c^ ,-<
c^r-
^x —
ooc^i
O 3i
35 35
35 35
CO lO
o .
CO .
>o .
1.0 :C' .
(M .
t^ .
00 .
Oco
o Lo ^'
CO CO
^CO
^ t-:
^.o
O +J
Cl
I'i
t-
-t^
CO
""^
OJ CO
'"'
— '
CO(M
(M
CM
>>'0
M-*
t- o
iOC^
•o >c d
10>0 CO
35 CO
C^ lO
■* lO
-t< t^
"* .
oo .
t^OO .
°8
•5 .
t.
"^g
'^IS
°I-|
s
O^'
CQod
t-^
o
^ a
rt~iO
00 S
r-:Z
S
^g
^^
t>5
CS T^
00 o
g;o
caoTf
^^^
10 31
C^-H
•O CO
t^-H
(M O .
35 — ■ .
(M .
c3
c»g
"^M
"^.c^
'^.^.S
^^o
1?J
<^g"
^s"
t^iO
o
co>o
CO-*
-H -HCO
CO
— CO
CO-:'
_r^
*-"
3
ci'C
«
s-^.
^3
sS
^S'-':
SS5-.
-*co
oi 30
§?-
g°
I- CO
00 .
tH ©
B
lO
lO
"" "^ CO
^'5o
""o?
M-S
c3
M C3
<l =^
i
>>
^i:-
s*.
§i^
^^•^
^CO-
c^co
00 .
ao 35
°.'^
CM CM
^^
^ "^ d
S? d
"*d
^
'"'
"— '
"-"
■*
'^^
CO
CO
-§
tf
CO 32
^ -*
SS"^
OQOO
lO "0 IC
O "O
_,
CO'X
O CM
a>
CO .
c? c^ .
CO .
C<l .
3 cu
c:i
—
lO
lO
CO
lO
^~'
CO
"[-■
•S a
£: C3
o >^
fe
^
"* o
•35 35
3-. CO
Ot-Tf
COCO^
t- C3:
(MOO
c^ —
t^O
c3
&J0
CO
^ ci
-^'
^•
CO
CO .
(M
lO
5^-^
3
^§g
fS
""
GO O
coos
r^^
^ lO o
»OCO o
t-^
tr- O
O t^
—
CO o
Kl
02 .
>OTf .
lOO .
05 .
OO .
rt .
-H Ol
t- c4
'a* (M
lO t^iO
P-o
od
03 CO
^IC.
^o
, .Tj(
'^.00
-S PI
^ CO
00 CO
cosn
COCOt^
(m'S
CO(M
co'o
CM'^Tti
o S
(M ^
^%
(N
c
o
&5 ig
f 1
^ ;i
&^65 :§
f i
ko :©
&5 io
^ 1
o
o
O 1 o
O iG
QC O lO
3; o lO
o lo
O 1 o
o .
rt
d loi
d I'e
(d IcN
d d I eo
!■-; d '< -h'
8 ^
I s
d ' a>
8
«>
o .^
O iC^
o .c
S20 .^
35 O .OO
o I?-:
3
^ lO
o
1
;-«'
d.
>i
T3
'd
OS
3
] ]
o
a;
^
_Q
S^
1 1
o
co"
2
M
■B
03
T3
3
'7^
■^
1 1
C
.O
o
CO
^
'B
I I
tx
u
i
1 Id
"ce
1
1 1
5
o:
! !»'
c
c
3
o
i|g
c
c3
o
14
03
' 1 C
1 1 a
13
1 1 *>
ill
1 c
1 C
^
Ic
O
1 C3
1
i3a
1 03 fi
!2
1 1 "^
j 1 c3
73
ilg
>
J.I
§
1 ^
bD-tn
c
1 "^
o
a
■'tl
1
III
•j-5 1 03
111
C
3
03
5
s
o 0
a
g-s^r
tf
S-ag
§ >-
o ' d
§
a ;-s
la-S9
(5a-2
O C
a"^
^
o a
T3
i
to
B
CO
CO
i: ~
P.I
i!
CO d
Ctually re
xted total.
)er 100,000
c/2 otr i tj
1
£8g
til
?ia
Si O
i£|
CO o "1?
1
c3 a^
1
02 ao
if
Area a
Estim;
Rate i:
oona. P
-Si
o
a
Area a
Estim;
Rate r
irillo, :
o
ga^
C3 ©J
1
a
« a .
o3a.iJ
03 a
G3_g
£t3
^
bi
-a
0)
a
cd
c
-s
^
^— '
^
"— '
^-'
s
^^
s
^-^
^^
ti
•— -
SU
~-^
^— '
<
<
5
<J
<
<
<
<
<3
71
0
I
lO— . c:
coc c
— — .
? "^
Tt CM
■* -^
CC X
-^ -rr ^0
l-CM
050
CM .
X .
(C .
iC .
Sc
— Ol .
CM .
--5
cc?cg
lO ^
oc — ■
T? CC
coco t-
csco
Si^
CO
CC
^-5
C5
o
t^
Tj<Tt CC
(N
<N
t^-*
32
>c tc ir;
r^ ic — 1
ir-TT-
<M X
o o
u': oi
•occ
cox sr
„ _
>.-—
iCO
oT .
CC .
CVJ .
X .
CJ .
«: t^ .
t.
^'^oc
- -_■
oc cc
-ts?
^.S
c =
CM CO
uou-.^
•.- CM
B
I>.'t-'ln
^""-'g
c^ t-
-;^«
cm'x
c
hJ^
>>
OiO t^
^ 3C r^
JJ C5
X C:
I^ lO
L- C5
X X
■^ t^ "-O
;ccM
CC OC .
C) .
X .
^— ■
cc ^
oc^ .
X .
-a
~ C <Si
^ ci
^ o
iC CC
mc X
-hCM
oc-ocg
cioS~
c.-^
cc c
CJvC
^-?
^
-x
— '
— '
p:
OCO 3C
-^ (M (M
iC —
X c:
CC CC
X ;c
TT X
X rr CO
X t^
IM t-
e^cc .
(M .
»c .
•^
CO rf .
c^ci r;
_- — ic
r-ro
CM C5
CO ^;
CC JO
CO CO CO
"" x"
2
o
t-
.cc
cm
c
.-<">— 'ii:
CM
■^CM
t£ C3
-< >
>>
t^co —
^ — ^
a: r^
^?u:!
<r: cc
05 C^l
^-^
§s?==.
CM C5
CC iC
o 5 ■.
^d
cc .
CO .
>c "C ir
cr
~ (^
rco
— CC
CM
i-O
CO
^
X
cf2
CO
—
C
^
IC C5 tC
c: — t^
u-^
^ t^
iC o
XC5
coc;
coMrs
O 35
c
t^ t^
MCC .
CC .
X .
CM _.
!G
ccx
CM
c^i
i|
"
CM
c t:
fc
^
t-— u-
t-t-C
C^C^
^ a
-;; t-
c: c^
CM CMC:
iC'-C
CC T»-
CM .
2 x'
CMCM .
"*
C5
^
"" «r
vC
~
C
3
"
^
K
t- X r-
cse^ —
OC t^
«o —
X iC
iC Tl-
— ,-
sg«;
cote
IC CC
— rr
"l?3
=c .
>c .
CO .
— . o
^oc
OCPC
rC"C
X X
O iO
t^X X
. -c
.»o
-X
.IC
. .>c
— '(N 3c
co^cc
'S'OC
t-O)
X c;
ic"o
— Oi
CMCMX
CM^tC
(M ra
"" =
(M"
CM
" cm"
cm"
Q
,.^kC
55
?^&S '
~
^C .O
"~"
"
s5 '
~
v: o
g
s5 ' ^
c
o
— c:
o
o
c o
—
o
o
C; o
C5 c:
-^
t-
:<■ c:
®
iri — ■
l-'
— ■ , t^
— ■ I
^H
~ t-
— ■ ,
oo'
c: CO
x d ,
c
— ■ '
c<
C5 a.
«D
C 1 w^
o
35 — 1
"3
-^
—
OJ
— <n
— '
00
— 1 <M
—
— CO
«
—
c
-^
—
li-
;^
^
o
©
3
c
1
1 .1
cr
c
M
•ri
3
&
'-2
m
fe
7e
c
■r
c
c
J
c
>-
s
-t
3
i
Z
3
ft.
©
C
c
2
c
3
1
i4
', m 1
c
1 cc
(5
1 M
1 CQ 1
o
s
1 1 1/5
' CO
xT
c
1 1 ->-
1 -^ 1
3
C
1 -1.^
, -k^
1 -1-3 1
1 1 -*-3
, -M
~
. . c
.^^
■ 1 C
' G '
. c
c
1 C
i
1 3
1 G '
1 1 c
. C
c
c
c
1 1 (S
>
1 1 ce
^^i
^^
=il
< OS ',
tt-'3 X
1 ; "
tx [^
1
C
C ;£
•s| i
i-S-S
c
1
■Bi
-
G-^
>
.s|^
£
■B ;l
E^
ysi
k. 1 -^
3
C
c '^
c
"£•?
E
C ; C
C ; C
P ;
g
2
c
c
c c
PS
5
2"=
s
CS
C
P -d S
^
c
cS
>
S.S
fe
03
c
Jli
ilil
is;
1
<
X
Hi
X
•— 5 '
III
^ —
X
1
^
i-i C3
s
>
2
'^^ §
2
1
-
^ 2
IS
o
3 K J. -
■o
o c; ^ —
13
_o
_^
ai
_2
^
" ~ 3
_ii
c
ill
^
3
:
1
"H c cj.p: a.
S
o
g55
c
1
< ii
o
a
tj
£
^-1
1
< —
5
1
H
-<:i'ii
S
1
g
S
cd
M
M
^
>»
cd
•3
S
a
03
c«
cS
«
<
<
<J
n
pq
«
n
n
n
72
Cr ^y-^
C5 (N
CC lO «
rH C^
Oi
(M O
lO (M^
>0 05
lO -rf .
C^CO
IS'"
ccoc cc c:
(N (Si
f (N (NO
(M . ^ .
IM t^ -^
CC .— ( CO
(N IM
CO .
00 C5
Tf lO
lOiO
C^ 1— 1
CQCC
o t^
C5 OC"
lO »C 03
t^ CO
1-4 CC
^.^
M 00
^o «5 ;
i-H t-
(M (N
t-C5
(CaC
g ^
O O lO l^C lO C lO o o
&^ ;g
p «o t< ,.-
<3sc =
!£i^
^SS^'S'S^^
o o
S-H o
5 t« <^ S fe
<5W
Si ' w
PQ
c3 O a
3 tc
o c
-2 fl^
c rt^ c c
) bfiC po
!.3 o ^o
Wj^ c: ,_!
O c3
?3|^^fei
:<1H
c3 ^ '
pq
CO
■S
■ CJ
3 CO Igccp^a:
llpiili
■ ^ - „ O C2 ,2 "^ rS '^ 5 "H '^ ^
g 2 "^ C.2 ?^ "5 ~ ^ i^- ^ - c :^-
M go
>.
Sd2:38
111
•- « o "o '-' ^
221-746°— 66-
CS t-ro
t^tr-T-H
r~ CO .
CD t^ O .
O 00 .
OJ O --H
00 Oi
00 .
OOOSIM
cocoi
ss==.
CS 04 —
(M TJ< CO
t^ OO CO
00 <M
CO .
C0.^CO
^ -^ ■*■
O O CO
r^ 00 .
(M CO 00
r-TofcO
00 »o o
(35 lO .
00 00
■O .-. lO
M »o X
. .00-
(M <N —
^
ID
?.
^
o
t^
^
Tn
-o
"bJtS
3
S'-':
^-.o§
05 o Ol
■^ o .
ooooo
I §
I? 2?
00 S
§ s:i
^fe5
^fc5
xS
^
t.
ft
O c
5Sft=sS
3
"§^2^
f^ 5
PI o
o o
OO
cspq
K) "J t< - O
-si
^ c3.S«tl'2-C^>>c3.S«c'
III
:l o®'
o a
;- o
K o
gft
? c; .5 o S "2 c3 ID
3 '^^^B 5 ^^'-^t:-^
o
74
t;^Tt<cD
>oo
005
5SFt^
a^- .
'^^
coco
S?=^.
r^ 05 1~~
00 ^ .
■^ lO t^
(N (N C^
»0 >0 -H ■
CD 00 .
00 OOO
lO C5 -"tl
00 CT> .
00 oc
(N CS 00
o-o-S§
t^ CC 00 CO iC Tf Ttl
^ . 00 . o> -H .
00 t- Tt- -*< 00 c^ o
coo >o
^ c^ c
00 .
lO 00
lo CO o
lO lo oi
00 lO .
00 05 O
O) CO . t^
00 --I (M
CC CD CO
05CO
05 ■*"
05 O .
05 O 00
0005
t^OO .
^ — I CO
(M OS
O Ttl CO
CO >oc^
(N (NCD
lO ICCD
OC 00 ■— '
r-Oi
OTOCO
^.°IS
-^IS
CO iC "ti
CJ (M .
S CD-
P^
O 05 05
s'-.
COCO
g^-.
CO oc .
T3< Tj< CD
<M •<ti
O .
s ^^
"* o
^
§ &5
oo
« jri _ .,
'G CO o "g
O'^cs.S
Ig
X; I r-l '^ T" 45
S 'S O CO O O
o cs ^ • J2 oi o
M'
Hw
■£« c;
' H ^ cs .S S o ^
; .5 P ie -^ a5
P
r^ o ® r-
5fi c "ts Sd
c c
PC
O PO
C3
CI
c
^ i§
b£
o
c a:> w
as =» =e i^^c
c3
^Z'B^^Z' :§^3^'c2 ^2^
•3200-^2 ;^13t32-2^ IS-S i^'SS .'-^2
cs ag « cs ag^ X I ^3 p ^ C3 g a&
Ptl'o5
d-<tf
WW ii
- S K " g,
CO O P ?? r/-. fi
i<^fdtf^g
75
c^oo
coo
cc t^
(N OO
Oco
05-*
Od
— lOOi
loeod
o .
lO— .
CO .
o .
1—1 -^ .
S ^'
coo
lOCD 0>
^H ■^
CI 03
c5o
d d »o
"So
^
o
^
^
'-'
(N
^ ^ CO
'-'
.-Hd
l-H rt d
3 S
<^^
CO 5D
t GO
C^J C^
^00 r-
-H 30
goo
8^
oo^
ggo
ft G >-
CI .
So
C2 OJ .
G> .
00 00 .
^ X
(MCOO
COCO.
cor-:
^lO
100-2
.'J"
."*
■^
ZD
.^
g c3 «
rt iC
^ lO
CO
cot-
d'd'o
d
fegS
J«^
>>
o^
cso
IM .-H
CO t-o
iC' o
lOO
iOCO
d C) CO
00 t- lO
CO .
00 .
o^ .
o .
d X .
t- 00 .
>3
^ CC
05 t^'
c-^ o
CI CO
^ o
-H dO
iC' cc o
c3
. .!C
?5
.iC'
'S'
^'^
TfH
^'oo
coco t^
'^
CO t^
iO'iC d
^
f^
COtJO
o^
— ^
CI X o
^(^
CI —1
— X
cs o o
CO iC tt
00 .
t^ .
■^ .
lOOO .
(N
o
(M Co'
CO CO CD
iO -H
loo
^r-d
CO
Oi
r^
^
^'j:?
^'^-'d
o
iucs K
<<>^
>>
C^ CI
lO iC'
o o
s§^.
■c-j C-.
■OCl
C5 00
r-u^^
,— t^ ^
CO .
GO .
C d .
00
^ 30
^ ^ IC
coo
rr rf<r-
00
"S-
c^
Tf
OC'
03
d
K
co^
!M O
cr.cc
-- CI CO
t-CI
— t^
^ X
-H CO t^
t-005
_o
<M .
oi .
CI CJ .
d .
o .
1^ t^ .
dco .
3 <B
id
>o
-H CI
o
CI
'S a
fe£
pL.
CJt}<
(M ^
t^^
OOtt
CI GO
CO CI
XC5
O CC d
GC02 ■*
rder
non
igeni
an-
CO CO .
(>i
'^
co'
'^ "^ci
""^
t-
^c^:
00
id
3^'^B
^gg
■1
C3C0
TtO
t ic
^
OiO
t^iO
C5CO
^— . —
coo: o
IZl
JS.a
oc ".
f^s ".
§d
CO t>- .
coo .
^ «
CO lo ao
Soo
'S'r-oo
COiO^
C3 M
. -t-
.»o
^-^-^
^ -co
-»^ G
(M C3
iM —
■~c ;c o
t^
CI ^-
O CI
o o^
—1^03
O o
^Sg
1
1
i
i
g 1
i
f i
§
^f i
1
Ti
1
f i
i
i i
1
f f i
f f 1
1
CO*
o ;
01
o' i
j^
S 1
>£5
S^8
"*
O 1
o
i 1
t-^
o' 1
«D^
c=d ;
»^
do 1
00
O J
<N
o 1
CO
lO
o 1
020 1
cc
030 .
OJ
(M
"^
'^
"#
^
c
^
~
c3
~
"~l
,
^
S
>.
i;
.2
C
c;
"O
3
c
O
.iij
t/T
<
C3
.2
>>
C3
3
O
.1
^^ 1 i i
1
5
^ i i
m ' 1
I
Si''
M
.2 1 1
o
O
o 1 1 1
1
1 M
1 OT
o
•$
^
^
O 1 ,
M 12
1 CO
B i«^
3 ! 1
^ 1 1
1 1 c/:
c
1
2 i ! '
sill
1 -1^
, -tJ
f3
1 -^^
3 ;-g
O) 1 -t^
ed
1 1 -^
c3
oil"
O
!g
Ig
:; ;g
s
1 ' 3
ti
"Z
S. :§
s
^ 1 1 c
o
U [ 1 g
o
^«l
im
03
i^ 12
§
>>
^i
Sis
Jsi^S
1
s^ '?
■3 tX l.'^
s
^■^^
c
•^ cS
xJ-^2
-rr _£
^- ■-? 'J
3
>..3 I'S
i'S 1-s
s
o o o
3 G—
sS.S
.2
o o , c
§
§ O 3
^ §.3
^ c '■'c
_c;
3
^
52§
>
w
i:
i'l
-a
CD
i>1l
id
O
S|
3 >> -
"o
£ £ "- ^
o
'^
~ '*- c _-
4
•Si's
sis
~ — =
Ill
hM 3 £
sis*
liii
73
,£5
1 il
'^.-^ 3 .
ssll
d
>
313^
III
C 3 7^
111
i
1
fS 3 £7
sill
3 ill
|<;:2
a<^
W
eS
>
ii
<1P^«
c-<Wtf
rt
c
<{pi
i5
S<1tf
-
a<^'^
§-<W»iw
<:wtf
.2
3
^
5-
"rt
G-
hH
1
tj-
1
ti
1
&
H
H
H
(^
fe
f^
p^
[^
CC I- CO
^ — (M
03 oc <c
Tt ■* !C
CO IC .
«C tC <M
C^ Tf t^'
IS
--ICO .
-^ -^ 05
c«5 co'oc
CO CC GC
^.^.s
— Ol IM CC
CC —
(M CO
COOC .
CO cc ^
. .GC
o'coǤ
X c^ ^.
— CC
c^ t^co
<C COiC
0<M
iC C5
Tt< C^C
— 1 CC CO
O Oi Ci
?5S-
?^?5^-
S
-s
"^
CO CC ^
OC CJC CC
CS <M
<MGC C
CC CC .
CC coc
O C CC
CS CO ^
c c >c
rf^ OC
CO .
-* CC
O rt CC
(M (M C
C (M «
CO Tf .
CO >C I^
C5 CC .
gg
g &5^ :§ ^&^
o CO o I o CC c:
^^
O OC
l^g
' C &
SI " ^^-^
c
£-3 8
«c-
S-, cfi cC o 71
(DC'
''2 3
cr. fl c
:5 O <^
H cs o ce
sa-sg-figs
^c.H'rr^s
= ^e-A^ = ^Q
> '^ s 2 r^
: c o S -
: ,^' 5 w o
O C3 ^ —
•^ C
^ ::-''^-=«'C T-'
O c; Ji _ X O i
OC
!-i C
-* S-. cic
, a
'CIS
|£|i||S|i
-M^ ^
; -^' s « j; '■;:
OJ :; ;^ C<S OJ cS ;^
g C -< &- ^
-J o
00 30 00
O — ' w
aoiM
XTi<
w IC — 1
— . U* — 1
■5; X
CMOS
05 30 .
C3X .
"•^ ^
°d
coSoc
— . (M-*'
2 c<i
-.= a^'
o +^
;, vi-
^ ^ 15
.CO
<N ^
Tj< ^ c-a
COCO >o
rt<co
32
<^:s
- _
S5 IM '^^
^^„^
^ t-
-C X
CM — X
OCMO
iC— .
0 —
c5 ".
^.^^
^r ic " .
o .^
xo .
CO .
o_-
ccr i
XC5 35
-^ CMO
X ;-c
^ -x
-^1-
X
com
u-'-^'t;?
CO CO CO
CO
<N uC
—
^
CC "-t
^^
>^_
O CO
^ t^ X
■^ -o
_ >-,
.C C^)
o --C ^5
i.~ ir^ o
t^Ol
CO CM
3532 .
oco .
^ c5 .
t- .
uO .
^-^
t--:}- —
2: X X
X o
CC --C X
TJ- LCCO
C^l CM
'^^ X
. ►CS
o
"S
1
'
t- t-t-
w
^-'
cs~c^'^
C^)
"'■
cs —
— -r X
_ ^
^ v:;
05 -f —
fflCDO
1-0 CO
0 CO
111
X .
^ X '.
?5cr.
Rxc;q
C^ ci
t^ -a-
Tfi ^ C^'
""" 2'
— — 2
^
I~
^
c^'s^' —
-^
— _:
bJCcJ v:
<J>'^
>»
— —
- u-
C^ t^ u-
_j_
^ _
CC C~l L-
c^i 0
^_
??, ^
^'i Z-
?5 "".
CO ?o "'.
;^ C^i
X
xd
(M!NX
'"^^'
^ X
M
OQ
o
~
— —
c: ^ X
X — TJ-
_ -^
X X
._ ^
u" t^ u-
2 ^
C5 X
«
X c:-. .
-^ 1- .
?5 "^.
(N ?]"■;
0 ^
la
"^ iC
~
~
~
~
• :»
s- c3
C =-
-
X —
X ^ t-
O — CQ
— I^
XXI-
w t- iC
CM —
S[l
rder
non
an-
^
L- ut _.
CM CM .
~ CO
;x -^o
cm'
"3;
mv
g
C^I-
X C^ X
CM--.-
X t-
I^ —
^ ^o
gx^
s*.
CO CM
C^l .
'-r 3£ "•
t; _•
-# CM .
X .
I- CO
CO 'S- Tf
05C0
:3 5:
^'2
cT— 'x
""I'V^i
-r?^
~Vci
r,-r--?5
--i
^-i
^:E
II
(Mrt_.
CM .
CM
Q
.;,
"
o
-i-;
"
o
^
~
..c.c Ic
vc c :
o
v= i 0
o
o
— £■ ^c
C
o
o
o
c; c;
o
r; s
o
s
o
C:
o
"--; o
o
0 0
0
"^
^
^
m
^ S
t-'
■^
2' 2 ' °^
■* o
oT
d t-
"S"
«
CT>
c; o
t-
0 . •*
"5
—
CO
—
" -^ ;
-^
"#
•— '
CD
"■ — CN
— <M
-—
-
_!
; ,H
^
^~
6
CO
"f
a
1
1 1 1
G
i
1
•-^
i i ;
CO
1
ti!
.2
w
c
0
1
.i
CD
-s"
a
! ! :
c
3
o
O
"§
G
3
1
s
g
i
3
0
0
rt
i J
&^
i : J
O
O
1 1 CO
1 CO
1 CO
1
;' i oi
"? i ci 1
'i
*j
1 i-tJ
,*J
,-tJ
1 1-2
o
I I -k^
>
1
1
-5
>, ' d
•S
O 1 ' Q
a
>■
■ 1 O
^ ' a
■ G
' < G
s
5
' C 1
' "g
o
^ • C3
o
M ' ' C3
0£!
' 1 c3
>
' C3
1 CS
1 1 CS
c
r cS 1
0
1 C3
o
C ti-ti
Sbi ;.t5
2
bi ;.t5
t^.ti
iti :.t5
be ]ii
o
O
bi.t5 :
xf-^
3 ex:
1
Pi|
1
TO
lii
3-° ;"§
■S :-G
.S"^
f
1
TO
'3
3 2S
><
5 a ;-S
2=5 =
T
^
2
5
c
O 1 C
G
p
C G
n—
i
6
O
S'
G
c3
li
lis
S
i
?^2
= 2
o c; —
H
a
"c
>i
o'
S
1
"S ^3
1
l|||
1
S
III
1
c
^^
>
1
1
< —
6
1
:"i||
<-:-— ^
1
<ii: i;
1
1
5
< —
o
o
u
tl
^
^
M
c8
a
K
c
►^
►^
^
•^
-MI- CO
r-H -H OC
vot tec
c . m .
15 OJ rt O
Ob- -H ,
<MCr-.
iO 00 .
(N <M t-
^-s
MO rM ^
»H N 05
uO 00
-H Tf 05-^
--S
CO " «
03 05 "O
t-C^ o
oc-^ .
CO Tf" .-^
r- oi ^ ca o
Si
(M ^
COOC t-OJ
oc<)
<x 05":
cot^
ss^
CO iC
^.'^.
^.^.
Tt^oa.
— < o
^< -^ Tfl
^ CO
-I -- O 05 IC 03 CO
S . 05C0 . Ol .
C — < — I C^ CM (N CO
C C5 CS C-1 05 CO »o
&5
65j
i f
fe^
8 &5
ill
. a—
lis £8
C >>R.
Mtii 3 ,. S
.S M
1 ■« ^ o 1-55
i^So'c^g
ft--
(H o
c3 O. -
O.i
Si
o 1
, =«
c3 J I
I O C
i2§
1^ n—
!^ S,
£S.
c; ft „'^ 03 ftg
<^ t^ t^S '3^ "15 d
tn C3 a; -T^ tn CC ^-l
'-^ ft--
o oo
s ft-^*j
c t:^
U c c
>.tLi 3 t!
?*^ CO o 5i 0)
-H - O c3 ft>
5 C C^Pi s
c-
3
o
15 §
>>r-
i3^;§^5'i^cs-^B|
M
'■3£
^<'>
3 S ;,'i'h:i 37;
"S "S JJ JR c/2 o a>
cs ;±; ft^ o ce ft
cs .2 s m"^ <^ h
p « tl ^5 g -g
79
r^ t^ t^
O 35 lO
lOCI
CS CO c»
lOX
t-H --^
rt< 05C^
05(M
o ^ .
r-a> .
o .
t^^ .
>o .
O .
t^r^ .
a^Bai
cnSi^
,-HtO
co^c;^
CO t^
C^X
cot-^
t^O
CD
00
CO
a>
rt'rt'c^
.rj<
°i2
c4'fo~co
o3
coco
32
<'^
O O CO
^CC (N
IM CO
00 O N ■
^ a.
c^ ^
X(N CO
ss
^-^
H C
s?s^
Scsoo
iS^o
g;o
^ci
g8g
i->
V, >o
. >t-
X
o"S
8 ^
>
cc-^oc
^^O
■^
S
CO't}-'iO
feg
o
iJ*^
CO Oi-H
CO GO '*'
00 CO
>ooo
^ CO
>o^
COX CO
OCO
O CO .
~ f3 •
CO .
t^^ .
CClOO
S'O
'^§^
x^
^d
^OJCO
^s^
'^^'"S
04
CO
X
^ .o
co?5_
"ti
CC :C X
»o
i-Tt-Too
CO
(M
t- t^ 03
'-<"
ffi
05 XOO
cC^rt
O) >o
00 t- CO
O CO
CO^
oo^
ICO
QOO .
CO t^ .
t- .
35 ^ .
CO .
o >o .
ill
ot^o
1M!N^
'^ ^
^co|
CO
" o
05
CO lO
&£ C3
cc
<!l ^
(N- -O —
-V- -o
O <M
» IC t-
» Tin
t^ CO
CO 33 1:^
^ CM
>>
oc^ "".
i6 5 .
(N .
050^
X z> .
S^OOCTi
CO
O
^ <x>
coco 33
x^
s
o
CO
'"'^
^
3
«
t-C X
» CO c^
ci o
o CO c:5
»-H CO
CO en
O— 1 CO
3i CO
o
r^ w .
(N CO .
CS CO ^
CM .
r:!
05
00
(N
Xi ©
c fc-
fe
lO t-OI
X O lO
CO era
■* CO CO
Tt-CO
COC5
t-OlM
s=^
o
O CC .
c^ c^ .
•^ i-O .
33 .
^O g
G
GO
'"'"O
■^
c-
"-I
ca
CO
X
^ c.Sf
bX,
^-CEt
s
3
^§g
r^ to »o
aOTT' 00
— —
IC t-^
,
— •N
x-^<^
lO t-
M
oo .
S^x
CO .
-3'^
r^l-lO
?3lOCO
tM Tf^
(MC^i
CO CO
. -t^
» »-^
-tT
— "S^
■w c
t^r-r-i
CO CO o;
co"co'r^
C^ X
'*' -* r-
s^"^
o S
CO -
F_f^
^a
C^ ^
S
"i
iiii
i§i
i ii
^g ii
i ii
f i
i
ff ii
f 1
*^
«
i| s
co'd 1
8 c
oio loo'
o It*
o :
<M
ioo ;-
d i
cS
OCO ;
>
XO i"3
O lO
^'S ;^
O 1
3
CO
-H .<M
— 1 i<N
""" 1
GO
'"' 1
O
^
"C
•:^
>i
>>
o
o
X2
3
s
a
3
O
p
o
3
c3
<£
g
^
3
C3
^
c3
5
1
Q
i
r— 1
2
D
■SS
£
x;
_a
tj
i
C3
1 1 m
E
<
c
1 CO
C
5
Q
1 1 CO 1
' tn
3
03
3
3
1 1 CO
-1^
1 1 -^
c3
1 -1-^
1
1 1 -^ r
1 -<-^
'— V ; -4^
1 1 ^1-^
^
>^
I 1 g
S ■ '§
>i
1 1
1 1 § 1
< §
^ :g
i ig
:§
1
c
tC 'i^
p
tiC i-t^
UJ.'S
M 1-'^ i
^~
bh^
c
i
3
hi I.-S
y-^ bc-li
3
O
O
5
■^1
1
■3 1 c3 1
^•11
o ;-2
fll
5
O 1 c
2 ' ^
0*3
O , 3 1
2.3
O 3
O 1 3
c
O 3
c^
s i< —1
^
3
U'""
T3
n, — r
=:
p
" -3
^
^9
a-
'V
sr^ o
Xi
OO
3
Oi^^ O 1
c
tH
^
00^ =
®
a> w
1
1
X -
^
-JO
as
>
b
'rf- r ^ X
s- c30 '
I'll :
=
— ^
is
3 ^
Is.
'3
1^
^■^i^^
<l^l
^
1
<;&ii?i
o
"5 ~
III
1
liil
"3
o 5 a;
"o
,5
a
.3<
c..£«E
X!
1^
a
eS
cS
a>
.2
^
»^
S
S
S
S
s
80
^•::;^
<N.^(M
u- ^^ 1^
-^ C2
cocoes
"t icc«:
— ■<= T^
Ol ^ .
T+< U-. C
5C IC -
«(N
CT CX CC
. .CO
CO CO 05
O5 0C
^ rt CO
iC lOCC
g;:;.
CO t^ C5
OZQC<=:
iC oc oc
— I CO "
r^ CO .
Tt< IC M
CO CO -^
cc'cc'oi
. .<N . .CO
OC 00<M rt (N C
if
coo
O 00 O
o lo o
&5^
>0 ^ O
■< ^ cS • ?
a^^s
c
Jj oj en
c3 0) 71
^5 =
o c
O C^ C C
OiO o tX 0)
t-o MO) t- c:
fcH cS 0) -T" fc^ rr.
C 3
2T;i=
C3.3
^S5
- S ° ~
'<f^pi
§^
52^^5o-
: a? ci 5 03 .5 a^
1 C; tJ 71 ~ en C;
81
ilS
g':
050
XCM
?5^°
??^
.ggEco
^S°
Tf t^
CO •-("
CM CM CM
cot- ^
2i^
^'^'-
s
^-^
■^
^^^
^
;;-i
^'^'io
C33
<<«
-< iO«£
05CM
<c o
0-. 1--
— ^0
CO r-
CC35 CM
SS^.
>"S
CC .
t^ .
55 ".
m5!^
^(6
'S-CS
.CCM
CMCO — ■
g c >-
-ao
..'*
0
-35
igo
lO'io'iO
"" ^
00
CM
— CM
^^.0.
hJ^
>>
^88-:
C^Tt
1^.
S3 ^
|2;.
^t^
^^~'
•0-*0
co^ 00
05 rC
Tf OCO
' S
V .10
""loo
.-fs
.rf
., .0
. -CM
"be
3
t^tCt^
r-Tt^
5-
»o
-^X
coco r-
CMCO X
p:
^#0 05
t^ t^
X CM
CM t^
CC -^ —
-CO
CO X —
xot-
:3g
CO .
XS3 ~.
'^'3 —
^S-
SS
"^ ^
r-^
X
""" "" co'
corf j^
^3i
— e-1
<i ^ i
>>
2i^
OC' CO
CM —
1"
■is
^^d
1-005
^i:-
§§i
fe
. .!M
CC
..x
X
X
>o
o
tf
35 CM CO
coco
^co
oco
r-x t-
-*'*-
•cot-
CMO-*
(B
Ci c;
0 ._.
X .
CO TT .
■-;
— ?5 c:
'" c^
•*
t-
0
^ o
?5
•sg.
-^
fe£
El.
«^ s .
1
t- 0 0
«s
£1 L-
c^ c^i t-
^5
2SS
°^3
^§.1^
"bjc
§1F
3
^
t^ OCM
CM i-O
C<1 Ci
^ X
CCOt-
uO 0
crco-*
iOTt< —
-?!
!-:-s
Tf ^
s.s
^^
^^x^'
SE.S
-S c
t-~
CO 0
cfS
10 <S t-
o o
55 CM ""
?■■
^t
1
1
sg
^
i
f
1
i
1
gf ;
1
f ii
iiii
fii
-2
^-
t-^ C:
00
^
■^
d
0
d 1
o~
■^'d 1
eo
d loi
§s 1
£8
35 5
CO
CD
0
>o
0 1
tM
a 0 1
X IS
ol
(N
^
CO
1
5
0
a5
>
<
c ' i
■a
C3
i ; 1 ;
cc
C
1
3
c3
1
5 i I 1
"o
i i i i
i
1
a
g
1
c
0
3
3
C
1
c3
0
CI i 1
0 ! !
1 i i i
•^111
^ ! ! 1
5 11
a
0
^ i : : :
'^ 1 1 1 1
•21!;
1 i i i
OQ
V
^
i -1-
c3
5
1
^
1
03
0
1^
: \J.
^ ii2 i
i\\sl
0 1 1 1
1
c
is
o
1
til
c
)
c:
>
£
1 c
1 c:
II
c
1
J
>
-"3
0
s
to
1 a
1 c3
11
0 C
Bill
5fe Ic
1 i| i
i i il i
11 11 i
•1 I il
1
a
i
B
a
1 ti
Z >.3 7
OH
^2;
d
0
"3 G^ i
^ 2 -
i
j_, c ~ —
0
0
X 0 i <U
2
2 ?" '— 1
lllM
-Jill
03
5 > "= — .
j
o
,2
c
lis a
■1
S
"I
r2
"3
ilii
f
'S
S
0
1
Illl
"s
TJ
0 S
«
'w -
a
^
<u
-.^
0
^-^
be
■~^
s
-^
'S
^^
1 i2
&
^
iz;
0
0
0
0
82
00 or.
o ino
S'O
^^r^
»ooc
O CD
(M t^ CO i-H I
oo
05 O (M
CD 05 .
CD t^ CO
. .00
CO CO (M
MCOTti
^c<>
oo .-1 00
(N 1-t
i-H CO o>
OCO
COlO
^S
gs^
00 CO
CD COIN
CO
lOCO
CD r^
.00
(M 00
(M CC .
00 O 1^
IC CD •*
as 1^ CO
■^ a> .
o -^ uo
. .a>
(N IM CD
lO -H o>
OOIM .
t^ 00 ^
I t^ ooo:
»o 00 CD ^ ■
lO lO ^ ^ ,
i(MCO OO
>CD(M Tt<
O^CO
CM (NO
00 lO
^ CO
CO CO lO
■<ti 00 lO
D lOt^
CO<N
COiOrJi
^O
1—1 00 .
o; CO
CO
T-H .— 1 05
COOT
§ ^
i f f
fe5j
^^g
C C eS
^ CO
03 ® A
0-20
c-2
S13 o __
3 ,.
03 ®S
c3
Oj o
fin 3^ .
a <D
C3T3
O G
S|
C3T3^
cs 0-5 o.
pin 3 C,g-
.pq <E> o
; t- ccc
8w
Ph*^
<;Htf
3 03 § ft .
: £; w el's
c3^
SmS'
oT^ O CO 03
S-, c30 e3^
3 o i^ <t> •
■„ tn a C'^
C c3 ®
<1«
83
-*t^
■.*<M
>OiO
lOOi
to !M UO
lO 00 »o
r- CO
>n ■>*
t- -H 00
ss •
03 .
?^-:
O •* .
lOCO .
C2 .
00 1- .
c» ^
(N CS
o3 o
CO CO Oi
<M (M r-^
t— 00
CO 00
05 O -H
0*J
00
o
t-
I-
02
..^
Zr^
J3 >—
(N C«3
'~'
'"'
■"•
rt CO
?3
3 ;:
coce
t-(N
uc^
OTOO^
OOO CD
COM
-H CO
C5 CO -H
^
^.g
"i
^Oi
So^o
CI CO .
-.8
oco
^^x-
c.
C«3Tf
CO
^
<MTt<
CO
CMCM^
^.g
o
H:jfe
1-:
■>*' 1—1
C«5(M
C^ CO
coo
t-iO lO
coo CO
u-t-
CO 00
OV t- o
§C,
^5?
l^co
f2^
?5?5^
s^^
oi .
35 lO
B^~
-"S
OS
t—
- .t-
'^-S
, .o
"3:
TP CO
c^
'*
•^
rt -H CO
M
Tf< 00
iO
CO-^LC
3
a*^
C0 05
COiC
n'^
(M lOCO
en Tf t-
t- o
f CO
C5 ICCO
(M .
<^ -i
<M .
OM .
t^oo .
CO .
00 CM .
ci'O
Tt^lO
^'^
>OlOiO
so
OOO
?5oc
coTf<C2
tH Q
3
•o
a
lO
t^
cq
bjo-M
S
(M
MC3
ri
< >
c3
OC5
^05
I^05
O CO
oo t^
coot-
CO i-O
CO o
^ — -f.
>v
O .
o .
— CO ' .
1
'^
-^s
ji
ie
°s
'"cd
--S
«
S=^
C5 00
00 CO
^^
Ot-OJ
CO coo
o c^
(M O
-**!:- u::>
^
IM .
a-
CO
t^
^
'^
^ ^ a6
c4
2
"^co
33
O i-
&H
1 -w
t^(N
— I C5
^ 00
t^o
lO CO ^
05 ro — 1
OCJ
X -*■
00 35 CO
'C .
c
C
"bh
^oi
Tf5
""^oc
CO
o
^
'^ ^ oi
::
'^'bL
s
3
§
il
S3
lO^
0(N
cot^
t^ Tf
— CO X
-^ — CO
00 Tt"
SS 00
t- -Ou-
m
I- .
CO .
-^ .
(N rt« .
(M QO .
05 .
CM 00 ".
-31
^.S
^S5
■"2
Zi
O r^ C5
-.»-.§
ZM
(NOO'
--;5
+^ C
CO CO CO
— ^ CO
CM CM
t- X o
o^
1
"i
^ !§
i ;i
i i
i ii
fi ;i
gf 1
i Ii
° Ii
gf i
■(2
o
g |«
O IcD
o ! >o~
o ;-
coo Ic-
t-^cJ <<n
<3 1^
O r n
t-o 1
s
O lO
O i>0
2 !2
C320 lO-
O-.C .05
2 12
o ,—
•35 O 1
3
t^
- '-
-H ^
^ 1 -H
.^ !«
— . Tj<
— 1 a
P^
r~
o
3
3
^
8
1
•S
3
_^
w
tT
o
3
3
o
©
t3
o
c3
■«
o
a
s
^
1
"i
1
Q
M
x:
3
^
«■
S
O
c3
c
3*"
3
Mo:
ii
ii
142
i-2
i '-2
i \b
^3
3
i-2
X
\d
O
1
1 1+2
;^
o
~.
1 3
■ 3
' a
1 3
i is
' ' 3
TJ
< 3
■ 1 3
o
1
3
c3
1 °3
', =3
1 <^
' 03
1 1 03
1 1 53
3
' o3
Cj
1 1 d
a
o
bc.^
^— ,
hi.^
>l
tx-ti
_^ci-1^
-— ■
M l-t^
^^
bc l.t?
>3
bC-tn
c3
■>
hi l.ti
S
O-S
l>
o-S
3
3
o
S'2
o-e
_^S '^
^3 1^
."ti
3^
>>3.Q
3 1^
1
3
II
c
3
o
o 3
o'fl
3
o
fed
3
3
1 ;-§
C
•IS 1 03
1 '"§
o
'i
T3 c3
o 3
u
rs 03
o 3
3
O 1 3
""
a)
Q,--'
O
n--
cj a"^
o
a :-^
O
a :•"
S
c
>
o
a--
CD
a—
3
x 5
C3
1!
II
1=
Ill
1
x:
B
J
3
o
3
it
IS".
S 03 O
o
1
3
03 <I>>
i
(Includes Racine '
Area actually re
Rate per 100,000
RaleiKh.N.C
c3
3
3
Area actually re
Estimated total
Rate per 100,000
Reading, Pa ._.
(Includes Berks C
Area actually re
Estimated total
Rate per 100,000
Richmond. Va
o
3
1
oo
m
ce
(Includes Roanok
Area actually re
Rate per 100,000
Rochester. N.Y
III
Ifi
OC -* Oi
Oi tc .
O CO oc
oc oc CO
O "O CD
r- ^ CO
oc r-
CC .
O (M O —(I
ex . t-
CO -^ oc T}< I
IC iO »C (N*!
(^ lO c
cc £ oi
r- -^ o
^ (M Ci
OC x'o
5^ =
CO r^
CO ^ Tf
-H CO
CO .
<NOC
t^'oc
^ CO
O lO o
>c ic oc
t^ lO —
cJfo'S
O <M C^
cc tf. c
. .CO
(M IM ^
ocooo
. .CO
COCO-H
O) o t^
^ ^ t^
CO cc »C Tt< iC
cc . ^ IC .
-<t cr. oc ci -*
(NO: CC CC iM
Tj< cc IC
. .CC
cc cc C:
Tt< CC
£5^
&^
§ ^
£5^
& $u<
ii
cc i;,^-^
si
.2s"g
ilil
c?.5.
'S in
3 >.'-'.' h4^-
c'-;:
: ai w'
;k«
t- c^j ca
c3 Ml
3 C
-2^
03 fl c;
.•eOCQ
C C
>-.^. >< ^ >. c
c3 a^ *■ "^ s
c3 « o'2 03 .5
J-, cS M rr) ^H tTj
C.'^
•sis
1^
6ii C:-'"^ ^ C3
C>.o
=<J«!
c4
C3 Oi M il
fit
o a)_w
O £g
<B 03 &
c: 03 c;
5 9s5-;2^
.r-y
C3_g
85
S^
O— 100
O (MCO
(M (N CO
uOiO
00-5j<T}*
r-HCOt^
OSOt^-
■ CO«)
OQO .
Tf-00 .
O C35 .
O-H .
OOCD . .
00 .
^§
CO cog
CO cog
OCOO
^'1
coco 50
lOlOgO
=^g
32
""•
COCOC^l
CO
'"'
M
CO
-«1ts
t^ lO
IC t^ CO
I-C^OO
COt-O
t^ IC
^350
rH 05T)<
^^Q
■*o
ll-
to .
00 (M .
0(M .
05 .
ooo .
ot^ .
t^ .
roSo
(MCO^
00 00 ■*
oog
UOOCO
t^i^r-
'^^^
>o
.05
TfH
> -t-
02
t^
8 S ®
^o
o<r>u::
CO
Tf<
CO
CO
CO
igS
^^
>>
o ■*
OOiO
r- CO -H
ooo o
GO 00
C0C0O3
^-00-^
cooo>
■^tm
Tj> — .
0 05 .
00 .
lO t^ .
.—1 id
o r- Tj<
CO CO o
^<o
S ^o
^ — 05
CO CO t^
00 00
s
.t-
. »iC
.00
r-T^"^
"bjD
(MOO
-^^00
CO
ofoTt-
■^
'"'"■'*■
»c
3
CO CO
O CC C2
^ iC o
O— Si
co.^
^cot-
t-— X
CC 0CO5
ooc
i- 1- .
o t^ .
00O5 .
CO .
coco .
t^OO .
t^t^ .
IC .
111
^g
%
00 00^
■°i
s
^
^
g?
btc3 m
<1 >i
^°
O C^ 00
GC' 00 CO
t^ 31 3i
oc o
00 CO Tt<
CO t^-*
CC OC'—i
Tf 'N
b
— !N .
CSIlM .
CC^
— CO .
t^t^ .
^'^
03
(M
CO CDOJ
00
•- X
o
CO
00
CO
^
;2
O
tf
00 00
— (Mt-
t-c-. o
Tt<rf ;=
c-:
CO COO-.
0---0;
Tt< T- 00
IC CO
CO .
TJH TtH .
t^ t^ .
CO __.
lO
o
" "^co"
'fl'
CO
as
(M
—
^
g£
fe
O '-^
02 ooo
^ OJC»
(N CO t^
O lO
■^ rt<Tf
05 05 CO
<^<^—l
TfH CC
rder
non-
igent
an-
1
MCO^
coco^
^00
CO
c^
CO
CO
"Sd
"
sir
3
-^ 00 t^
-H — -^
OC •--
t-CTi
CO t- r^
05 — o>
t^O-^i
coo
o .
oco .
CCCS .
'S^ .
o^ .
2SS§co
^^^•
li
OO^iC
COi-t 'S-
c»o t-
CO*C0
^lO -^
Q0O5 g
".^
COCO'S
-r-T'-c
ss'^
----R
ofofs
--^
o
~
g i
i
if;
i
Sf i
i
m \
f 1
gf ii fi :
i
^i li
f :
■12
^
O 1
K
00 O 1
1^
ood 1
05
aid 1
o
O 1
a
coo 1 —
' .00 0 ;
o
^s ^
' o !
J3
O 1
o
OS O 1
C50 1
o
O 1
050 100 050 1
o ,
a
(N
IM
^'-^ 1
CM
^,
eo
r-H 1 (M ^ 1
CO
>>
1
5
C3
o
-^ ' i i
c;
03
a: 1 ! 1
'^ 1 1 I
Q
.2 ; 1 1
2 : ; :
■^ : i :
a 1 . 1
? I 1
73
o i i 1
o : ; 1
"l:^
!=^ I 1 1
JZ 1 1
o
5
>> ' 1
,^
•n i i
c3 1 1
^ i i i
1| \i
1.a i?
c3ti :^
J5 C I a
C3
O
PI
111
§
Hi
III
"si !■«
o d
S3 ' ' '
1 i if
llil
1:1
jC
§
! ii
o , a
i ii
Olid
Ifil
m
ass
'-
^ Q,"
S G 1-
is a ;-
T3 a i--^
«&"^
i;
D< 1 "^
^oJS
CJ f^ '
2 P*;^
C3
dfqoo
2co 3 ..
c3
lilt
O 3 s I,
li
0)
M 2-^8
^^ - t-
S£io
Hi
^ ,2 -
M
1
1
L5
cS
lilll
1
1
o
c
ill
1
w
(1)
s
§
>
1
1
^- — — i
ii -- = ~
llll
1
t
i ri S — '^
llllj
86
CO t^ CO
00 .
CO M
•<f 00 IM
CD
■—1 <C'
t^ t^ 00
00 CO .
c (6
c-fS
CO ■^ O CO o o
lO 05 . (M CO .
00 00 CD CO 00 CO
I r-i — I CO ■
C^ t^ CO OC' -H
00 00 . "O .
Tj. -^ r^ c) 00
I CO ^ -rr a
Tf ^CC
cD-hC
CO 05 "0
00*00-2
1
oTic
§ k
O kOkP
§ fe^
CO O
OO — (
OO 05 O
O o fl
Q a-
., « o
O G
a-"
o o
2.2 §^
So 3 ^oo
9 c >^0.
b 55 3 ^.^
ss^s^s^.
£8
--!"_=? M -H
m O
PL,
; 2 c tis
5 a— ff c
, " o fj 2
■''So ojH
Itf fl G<1W
«|§
So
j 03 G_^ ^
^ CD fc- .>•
C3 .S <I> °3 S
^ C -•, cJ-C
5 c.
It;
1 c
! =e
■ o C5
t^ 03 C
S^2S =
c3 5; G,^ O
c: .S c.' O -g
C O <!.'
c ce 0^
^gl3
87
II
0!M .
rlr-H O
C<J ^ CO
(M (N IM
>"7:}
m'iO
O 00
c^ t^ o>
—I c^
m .
O OS
■^ 30 ■*
CO <M
t-i CB 3
fcuocs m
2^'
t-o
■^
!NOJ C5 ^
oo
(M .
^t c-5 t^
t^ ic .
CO -^ >o
IC IC 00
00 c^
00 .
00 C^l
XI .
C5 05
i ^^
§ ^
=* '-" is StJ
St;
O O
"^ ca G CD
1+^ (-!
;=2S.5 'Son
toes !°£i
cc o "^
0<i
M^
c<i;
^ o
■^ o a
§^5
eS 0^ c3
71 t. C/-J CS o
C <^ W Ph -S-
>
;:i ca <B 0)
§113
I pi
»D o £ c
3 S^-S'Si
I— I »3
><2 <3
t« ^ t: o "1^ o
3
:o
^3i
05 >0
»0 ^ CO
CO -^ 00
(N C^ O -*<■
lO O 00
m'cm'co
:::^^
lO 04 CO ^ I^
CO (M CO
00— .
Tti lO t^
— (M CS
— (M .
I^ t^ (N
OOrt
o .
CO o
es "o 00
lO CD CO
CT> r-l .
00 Oi o
(N'cico
rS? --^-5
CO en i^
■^ 00 .
.-I 1— I o
--I t^ (N 00
1-^ oc
CO O -H (04
t^ CO CO
I O — 00 o
>cO ,00
< 00 o
) ^ .
) t^ CO
coo
Ci .
00 05
coo
05 o
CT> O
r-^ O
§ S5
CO ^
^H 00 O
5 * t- >-.■ 1^ ^
G3 2 a . ® fl
0^ -!2 tf .S 5 ?s
C3 g ^« «i
P.e3 <D
ax2 «« c a
o a Pi r ) o
(D o ^ ai oj
t-o dJ ^ ■
►^ O N
o S ^3 c« o
^'rss^
03 P< CS Ol C3 Q
C3 «> m 'S C3 .s
t1
5' ?? • :
§0
3 -^ c3
X3 4> O
13 §1,
- 1; :5 S w
,^ 03 <3? «
3 tie
<1H
03^1-
'2ob^ro
< 03 rH " > '^ ro "
! C3 .S _g O '^ C6 _g
£ "S "^ a-i £ "=«
221-746° — 66-
89
General United States Crime Statistics
The data presented in this section are primarily of value to law
enforcement executives, news media and others for the purpose of
comparing the crime experience of a community with the averages
reported nationally by communities of similar size. Crime trends and
rates are tabulated by grouping places according to population size.
Police performance in clearing crimes by arrest is presented by
population group and geographic division.
National city averages are also shown indicating the type and value
of the property stolen, by offense and type, and value recovered by
police investigation. Robbery, burglary, and larceny-theft are
examined by type, as well as where and when they occurred.
City, suburban, and rural area arrest rates are shown for all criminal
offenses. Arrest rates by population group are also listed for specific
offenses. This is another step in building totals for crime categories
other than those in the Crime Index and in presenting crimes known
to the police through arrests.
Statistical data relating to suburban areas are provided for the use
of law enforcement officials in suburban communities in making limited
comparisons. Places used to establish totals for suburban areas in-
clude cities with 50,000 or less population and county law enforcement
agencies in standard metropolitan statistical areas. Of course, the
crime experience of the large core city is excluded.
It is important to remember in studying averages that usually about
half the units used must be above and about half below. National
averages can provide the police administrator with valuable guidance
in analyzing the local crime count, as well as the performance of his
force in combating crime. The analysis, however, does not end with
such a comparison, for it is only through an appraisal of local conditions
that a clear picture of the community crime problem or the effective-
ness of the police force is possible.
91
c *^
OS >n eo
04 CO'*
t~ OS
CO eo
;»,•+
CD »^ (
^•.^- +
C ^ C:
C — .
I :,-^-'
— ■M C iM 'M — ro irt M
oc c cc ac -^ c^i oc t- ic
(N (M —1 —
(M iC ^
c cot-
gfe
occo tc
t£. t-
as>o .
ifS cc xs
00S +
I- CO
I- I- c^i — . ro ■*
.CX+ ^-x +
t- C£ OC
■^ -^ .
M ■* CO
CC !M' +
tx CS M
WCD
<Si •a .
■>1<OOJ
CO-tC +
oc oc c r- cc 0) iTico^
CM «C . CC CC . OJlC .
— TJ- CC (MCO ] oc -^ CS
CO 00 +
CCCC +
(M to
^•0S- +
(M (M t- C: CO OC
t- (M CO <M rt
' ~ . «C CO .
-.C '^ CO t- 00
•0C'+ (>J(M' +
CO ^ oc
ooi+
OOSO
CO CO
>0 OS DO
« >0 tM
I- CD»-'
-H X Tf
-^• +
C3 SV. tpc
OtDOS
C0 50 r
!£ ^ -a" t-r^iM icic r-<
I + +
»- CD OS
>o OS
Ti< CO o
CO CO .
CO ^ ITS
ITS CD "r
— < r- X t— »o ic M -"S* •
cc c: . t- 0 . <M iC
<C XX -< ^ -H I^I^-
§^'
>C CO .
CD CO r
CO ■<*
OS t-
-H OJ >0
X^— C5t-Tj< C5XCS C-^t-
— Ut . t- •>J< . C^I -^ . -^ C5 .
rrC?- Tf*-!P — cC-ICO OCCOCO
c'c-f+ t-'ci"+ c^Ico+ C"S5"+
— L- C-. — X C5 CO CO
-H <M nJ
§1
t- c
«-Hao 1
§Sc<il
»-•»-' +
ss
O CM •«*<
eo -H <M
csieo
eo eo
-r — M
iC ■M :C iC ~ CO
CC X . X -^ . C^l cc .
I- o — :^ cr. — cc c; I
00'+ tCtC+ Ci't-^
r~ CI cr-c I- 1-
IC IC CC t- tT Tf
IS":
r^'+
*-^'+
o
w§
<J >rs
S3-
So
p ^
i
1 i
^ :
«_
^ '
c
00 1
1 i
_o
.2 ''
OS 1
"3 '
3
"3 I
C 1
c<
c I
• - 1
.-
S :
S ;
0
,
o~ '
_J-
S '
,
R, 1
0
^- 1
0
0
5-0 i
S-^ :
Cc
ce_,- I
J30
,co
« t- !
w'-^. 1
«o*
c > 1
cS '
C i^l
H
° ,
?i
". ,
^,
.
92
lO 003
O 00 .
t^ (M lO
„ 3
oooo o
lOOO .
TtC ^ X)
CD lO .
ic ro CI
00 a>Tt<
CO (M CO
^'^'+
(M CO .
CO fO IM
ii^
IS-
§2
112
ciicot-
^?^co
coot-
8K +
51?
si:;
§g2
Ot- 00
§So
COOOO
2&S
050Tf<
co^ t^
COt-
OSO-M
CO'~rtH'+
o'o'+
S8:St--
CftO +
COr-HCO
CO' CD' 1
IP
112
cfcf+
Eli
C0 05(M
2co"l
ciojco
00^ CO
(^fof 1
choice
CO lOGO
ScScD
+
00 00_L
■o cot-
SSco
1
ig;.
sis
?l?^CO
CD Ol Ol
+
00 00 00
55^
lis
I— CO »o
CO CO .
00 05-^
t-COt-
(M CJr-t
05 03 C<I
t- CI t—
gls
rf<^ Tj<
(N lOlO
^St--
^§0
r:g=o
cro +
cotC+
§3 +
oo>r+
t-'oo +
cfr- +
sa
•* -^
-hCJO
CO^Ol
CO to '^
10 1- 1-
-HTJH CO
rf^cnoo
^O^TjJ
^4+
gg+
s'^'-^
SS +
SS +
S2 +
•^ -rr
coco
12^
SSp-(
;22^
,22ph
93
ooeo
1
Oioo
C t- -X — t- CO C^l
1- — '
Tj- —
I- .
IH . -x . CC . CJ .
oc .
C j^
3 ^
ss
05 CO
~-f3 "1^5 '^.^ ^-S
CO'C OiC cccc o:-<?<
CO JO
oc-Jo
II
"
o
^ — OC Tf
<i:2
I
•«*<
!M —
OiCO
OC^ -^t^ CfO ot^
--c:
Jj'"
g-"
eo .
1- . — . . CO . <N .
X .
<;■
-< od
l-Tj<
— '-': 0C-* Oico ■^'C:
I2 I^
*^
r—
.t-
^-5? ,c2 ^-:s ^'S
.1-
JZ
05 0J
cToj
^ . OC c . t- -
c ".
CO
Tj< .-T
ir; _ — CM -H —1 —
(M-
t
'^
^■~
^
>>
!
c
8
1-^
coo
(NCO (MC^ (MMOCC;
CC t-
— CC
eo .
Oi .
CM . c^ . — . oc .
»c .
01 .
ce
C t.
too
»* CQ
;r: cc c; -^ I- ic cia-^
— IC
^ —
cs 5-
.«
^Oi
>:-; -co ."C -■>?•
.it:
.Ci
w-^
>o^
c; cc oc t- CM ic ce .c
<C iC
I^'^
<= c
»-
CC CO t- ic
^
^
1
vO
CM —
1 t/c
tK^
COl^
_ .^ — iC C -C CCC
C C-l
CC 5C
? t- S fcx o
S^co
§oi
S CM S Ci C OC S >C
..X .CM .c; -^
co^
.eo
■-I-
«D®
i-»-
ocrs >cci CMC cc;
2 X
(C CC
c: cc fc. (T -^
a>
c
■s^-g
--
i
oo
^
>o^
1
eo t~
urcM occc cc occ:
— c
^, _
III
eo .
CO . cc . "^ ^; ?2 •
o .
^ao
■rj.t~
^ —
■'T "C
^-2
«2
u--^ c:f^ co"2 uf-
=0^
oo
•^
oc ^ <M — 1
CM
"
1
>.
•rJl-H
coco
•c cx: CO >--: CO I- o ~
,
c^iir:
OO .
»- .
^ . CO . «; • — ' .
If: .
Tjl l^
CO 00
;-^ "1 ^-s ^'S
O CO
«c oc
Xi
-••®
«,-°°
2"
c
'i"
1
s
*^
1
C£
1
c;
«50
1
CQTf
CM -^ cr-. CM t- iC -sC C^l
CC -N,
-s, ^
1|
— . 'T . -^ . —
CO ' .
•<*< oi
Soi
— — ciw -nc; ^cic
iC —1
CO oc
-CM .CM -—1 .— '
o"^
■"^"^
05 ^ (M —
c £
o«
fe
«
„^
1
-^1
<:z a '^■ic en-* t^«
-5f< t^
oco
.2
c
" x: >» JL c
O'^
oeo
g^- Sco S?«5 S^-
S-o^
^co
l||ll
»~^
^•■
CM
x:
lil^^
ooo
Ti<>0
^ OX t^-^ CO-'?' C^C^)
CO-*-
>.oo
C
So
^>d
§d io ^5 5£r^
«cc
iC CO
1
S=:^5-St
oo-
ce-
CO T-" -T""
«<N
1
oool
COCC I- CM CCCM etc
c t-
CVI oc
[
— . -!}- . C-1 . TT .
-*■ .
coc
c ^
E ® !^
S t-:
COOC 'S-— OCC CO:
c —
s"
o'S
;cg c.'t2 .^-g o^
rCfc'
^-g
C. — ^. CO. ■'*".
I- .
CO ^-T
^H ^
r- CM iC CM CO C^l CM CM
C>)CVJ
C-) —
«
04
--
■«l<co
OOi
cot- CM-:?- oc: gc:
g«
CCOC
tC .
-c^,
Scd
u: X S ci "i oc c c
Tf« 10
^-g
o-§
cmS?^ r^'r-5^ o^_ ^S^
^"2
S-I
Sc-
:Sw
;c CO t- co' «c ^■" ■??< V
^co
^CM
eo"
1
.2
"9
'2 ^.
g
g
3
ft
.. , c §
S ;
1
to
c
^- ' ;T -2"
CO :
2
«
3
CO
OC^ . , ^ . , C '
c
^
.2 1 i
c,
ENCIES: 5,931 agen
00:
fFenses known
000 inhabitants
■"
cm"
oc 1 '.S ; ;-.3 ;
■^
c
c
c
.2
•^
il
II
,000; population 4
),000; population 1
iTenses known
,000-
to 1,000,000; popu
(Tenses known.. .
,000 __
to 500,000; popula
iffeiiscs known....
,000 ._
r.Roup II
to 250,000; popula
• ffciiscs known...
,000
GROUP III
to 100,000; popula
iffenscs known. _
,000...
i!
250
ofo
100
ofo
100,
000
ofo
100
000
off)
100
= =_.£
ill
<D S
>ll?ll|l^|'l^
825.
Sil
<3°-c ft
o^ ft
5= if
cities (
Rate
itieso'
Nuiii
Rate
cities.
Nun
Rate
cities.
Nun
Rate
i=l
-III
p-
o-
;C '^ C= C
CC
H
H
S;
CC CJ CO
C5
CM
94
00 .
00 o
lO 00
>o o
CO f^
CO CO
CO o
o .
(M C^l
00 CO
o .
a> CO
lO o
00 .
coco
Ol CO
tCcO
COfM
coc-i
O lO
O 00
-^ .
t^ o
-00
00 a>
o .-T
oTg CD
a^
._ o
S !=i
O-^
ii-T "^
o5^
.^nHR
o-^r
-^ s
•f^as
•7^ 3 03
^z^
SCO
co;2! M<
CO rt
2 oo
M3 c3
^rt
95
Table 7. — Crime Trends, Offenses Known to the Police, 1965 versus Average
1960-64
[3,3C3 agencies; 1965 estimated population 127,795.000]
Offense
Number of offenses
A verage
1960-64
1965
Percent
change
TOTAL
Murder and nonnegligent manslaughter
Mtmslaughter by negligence
Forcible rape
Robbery
Aggravated assault
Burglary— breaking or entering
Larceny— theft:
$50 and over
Under $50
Autotheft
2. 997. 815
5,828
3,925
12, 592
87, 352
107, 790
734. 205
460, 861
1,263,472
321, 790
3. 665. 860
4,441
16, 554
100, 879
136, 644
919,203
603, 366
1, 454, 044
417, 795
+22.3
+19.0
+13.1
+31.5
+22.4
+26.8
+25.2
+30.9
+15.1
+29.8
96
1
1 - lO . CO .
?2^ Z°.
^^.
LOCO
°ti
■ (M CO TJ« O
COr^ ^^
1—1 -*l
.C^ >C^
.CM .!M
.CM
3 ^
■^
CO 00
CO 00
•*
lO
-H 00
t^ -^
■*
-<«
CO
1
1
ooi
1 lO(M Tf^iO
r-o> -^j^oo
— 1 1>1
^ o
"§ Jr:
«5 .
05 . — ( .
CO . rt< .
Tjteo
(M TfH 05 "O
t^ CO CO ^H
CM ■^"
i^ co'
±i
1 co""^ 00*^
_g
ss'*^
oo"'^ lO"^
oT'^
o'^
C35
1 ?^ 2
CO UO
CD
"T
V:'
1
>.
1
c
8
Oitt)
JS"^ s®
Tf'QO t-CO
>o t^
COrH
CO . (M .
O . lO .
CO .
■^ .
S
■•i
t^ Oi
*^ ^.^
°a '^2
t-ro
lOGO
o
co"
<N -TtH
CO >o
of
Fh
>o
CO lO
lO
t-
i^ c^
CM frl
C^l
c-\
_r
Ir-t-
^ CO oa.
1005 CftCO
o.-<
lOCM
^
1 c c
S^
§5o Kr^
ic !>: S cm'
S-*'
t^ c-i
1=1
pq
><M
.(M .(N
.CM .CM
.CM
^
S ^
§ 2
o-"^
§
■^^ S
CO r-(
'"'
tn m 3
W)CS w
CQOi
(NO 1^00
OCT. "O^
005
^t^
Sci
■^ O I— I o
Sai ^-'
00 CD
OO-l
.I~
-t^ .t^
..CO .t-
.t-
CO
CO t^
r- CO
CM ^
CM i-H
s"^
><
gw
CO Tt< t^ o
CO^ o^
^ —1
C^l CM
t- . CI .
oa .
jj
St-'
F^od So
^00 coco
C^ICD
OCO
-co
.CO .'^
.CO .CO
.CO
.CO
[5
03
lO CO
2 2J
Cb
CD
o
CO
CD CO
P5
o
^o
1 ^o ^^
CM CM CM t^
COCO
o>— 1
-H . 00 .
CO . I- .
TJH .
<M ■rl"
t^^ coco
■^ CM lO 00
'^l CD
.-H CM
t a
.to
.CO .CO
.CO .>o
\.CO
o»
t^ CO
CM .-H
^.co
o ^
fe
;-i
®
•an
CO t^ lO c^
as 00 05 CM
01 01
S
o .
05 . lO .
CO' . CO .
m lo
t^r- TfH o
t^TH iOtJ*
o
«"
.00 00
05 00
l>
00
o
'o'
fc-
"3
o c c i^
'in 00 QOO
coos or-
,-l-«J<
CT>05
c
C35 .
00 .
-ii o O' i ^
too
fe OJ S oi
t^ -"ll
•^ GO
O
lll^l
^-°=
cd'^ ^-°^
.OS 00
05
00
(MOO
n?"^ g8°°
§^. s^.
g=^.
s=^
sl3
in CO
(M t^ O 05
00 t^ CMCC
COCO
OICO
.(M
.IM .CM
.CM >CM
.CM
.01
t-
a> GO
o o
^
05
CSo
■^ OS
^ ■<*'
s
S CO
CO 01
CI
"
i-l CD
^°. s-".
•CO cO'-^
CO-*
05 05
CO .
c . t- .
05 .
s^'
.CM
C c3
-S
^.^ '^^^
-s ^.?5
-^
O CO
iC o
CD
00
2 o
•O Tf
05 '-<
-*
o
TjH m
■*
5<
^^
eo
-■
11 lie
cb' ' '
,^
11 1 1.2
o ' '
s
8
i i :| i i|
s i i
S'
INiiil
O" 1 1
.2
_o
«r I 12 1 I
'■*J
.2 ' '
c3
c3
2
Pi
o
CO
i
III
§ 1 1-2 1 ;o
-iNliJi
\l
^ 1 1
"3 1 1
III
'3 1 +J ►
3
1
2 5
il ^
1
is
1
3
9 -3 b5 t:°^
1 =3 g 1 C3 g 0__
] >.0^ 1 >j PS o
iJil
1 >>
1
O
H
o
1^
2^
o
i
+5
.2 c I)
issis
1
^1
^
i"S
O C S S C S crr5
C a>^' S S^
m
5G a>
•3^e
s^iS^g-B^
-^is'^l
•2 .
11
.2
CO " 05^
.o pl^ ;-n o PL,
OS
'oG
3
'SoOA^
(M
Id lO --I
CM
GO
C^l
97
go
(MIM
"O oc
>- o 3
C5 t^
8^
oc ?c
05 C5
e
c
s
c
I
~ - , 2,
!N O
oc :c
oc c
— C]
98
04J
C3^
So
3 t'^^ U.-C
;r !;; « O O/
iO CO
CO .
03 00
r^ o
00 .
rH CO
JS^
OO
(33
^
O t-
'-J .
=s
«o CO
003
:S^
o .
CO .
00 00
^00
o t^
CO 03
CO .
-CM
05 03
r^od
lO CO
00 CO
CO .
w w rt
c3 4i)-3
&°1
o
5§i
s
<
^?^S
h^^ g
•;3« <»
•ho^i.
o ^ £
as ^
O &: £
o &■
no
•SOPh
99
<M
1^
C5 C>)
C^JiC
oc
t-
•c .
c .
c .
c -^
n?}
^.^
-^
!;-^
= -5
2
s
CO
<;c;
x^
8^
g^.
^'^
•c
jr t-^
"^2
iCC
Sg
c?
oc"^
CO
^
cc
(M
cc
i°
>>
c
iCiC
rocc
c; C£:
<M .
■nf
o .
c3
O'X
iCM
— iCC
C^J^
cS
.(M
J
:s""
t^
c
M
bX)
■^ cc
o) c;
CO-^
t,^
::
Um
5?;
|a
-.ct;
J;^
^ o be o
CO
oc
■a^-l
CO
'"
CO
-
o c
iC-V
IMTf
QC ^ 1
HI
l-^
1-
12 CO
co'
j£
<>^
>i
—1 cc
t^l-
OCOC
c ^
u^ .
M .
c
^^'
-a-c:
^C:
;;-^
C^^''^
OC^
"c
Di
c
-" oc
O C5
c^co
t-co
— o
^5
ceo
iC r-'
-^
u c?
^
tC
-IC
r^ ■"
^
o
(M t^
t-t-
(M-a-
!G=^
'3
9
5
bt.
Ss
^^
-^
-s
c
2
lili
be
COrf<
O
«lt'
3
00 <M
s-:
1^
CC(M
0^ >^„
£ d C3
P
CO
r^c;
rf CC
c=co
COC2
x^ _
Sc^i
gr^
g^i
C5 .
li
.01
.(M
.(M
1
^
1^
c
c
00
-<
►J
°9
"i
<
1
1 ;
<
V ' 1
&
^
cc
J
^ iJ
S
*'i^'
<
00_
.2
Si
Z
O
§
g
ill
to
O
1
u
1
>i
W
i ;>>
o
"S 1 >»
G
c3
>»
c
o
c
II
(0
1|5
o ^ «
gJ5
li
1^
S
H
^
III
|i^
5l^
° Sfl
III
•SOfH
III
ill
Sc^
•sot.
•|c^
3
^^
C5
lO
oc
CO
CO
C3C
CO
'
100
00 eo
'O -Jt* O CO
^ CO -# CO
00 "—I
(M C<\
t- .
00 . 03 .
03 .
54^
om
O CD «D OC
Oi>r, cot;-
t-o
0103
."^ -d
-lO -lO
-lO
-■«tl
3^
t-
^ ^
S "^
03
03
•i^m
00 05 t^O
005 -H ■*
CO 00
0 10
^
Is
^.S
§0(5 Sc4
°S'
--?8
«
C30
go
s
S"" S'"
00 lO
OS
00
1
4/r
c
o
t^ t^
OlOO O-l
(M t- OO-J
—ICO
t^03
-i
O . 00 .
CO . 00 .
t^ .
ICO .
(S
csieo
Tt 00 — 1 CO
00 03 Tf< O-l
OOrt
t^co
3
-li
-^
-co -co
-co -Ttl
-T»H
-'i^
^O
CO
O 03
CO
o
s ^
O CO
^
CO
1 ^^ !=«
S"*"
lOOO '#':1H
■<j< CO f;; CO
^ 10
»00
1 ,C c
lO . t- .
(N . "O
CO .
■*! .
f^t-:
CO ^ oo
CO CO OSt^
Tt< 01
Ko
-eo
-co -(M
-co -CO
-CO
-Tf
^ c3 O fe
-1 g
OS
s ^
CO C-)
^
2
>o .-I
QOO rHTj*
ooi^ 2 *
(MO
O3 00
111
oo
cnai 5 00
000
00'^
>>
o t-
CS CO o t^
CO ^ COiO
^ 05
gg"'.
u
s .
t- . 05 .
03 . 'O .
10 .
-O
OiO
^ 05 r-H 03
C^ CO t- Oi
05 in
r-H CO
-(M
-(M --H
-C^ -^
^
00 t-
t^ CO
(M'"^
of"^
o
S
Pi
o
CD^
CO t- 05 03
OOCO 030
0 CD
Tf t^
§s
CO
00 CO iO'^'
•0 .
CO .
t^^
Tf CO 00 C^j
00-^
oco
gg'
cd'^
CO'"^ rt''^
o '-
f^ .
Oj
CJ ' -,
t^ ■*
Tf lO O— 1
00(M OC^
(M-*
CO ■«*<
'S
. -2 Mg
05 .
O . iO .
05 .
o
l^si
.o>o
CO'*^ r^ t-
CO-* ^rf<
CO CD
00 >d
s
en
eoco
lOOO ■* -<
OO -HO
t-o
10 (M
o' s r' 1 -*^
00 .
(N . — 1 .
CO . lO .
cotH
■S
Tt<'*
t- Ttl O lO
1— 1 lO lO -^
CO-*'
O
^-
(M -H
'^
OCQ
OJt- >0(M
r-»-i r-m
S5
CO CM
t- .
t^ . 1^ .
CO . CO .
S ><'-
■^O
IMCO ■>*< t-
Oi<N OOC<I
oco'
-co
-IM ..-H
-CO -co
-co
-eo
eo
(M 00
00
00 lO
CO
(H r^ O
C^
>o oo
t-rH Tj< O
r- CD CO CO
10 03
CO i-H
CD .
Sc- iSco
CO . lO .
00 .
t- .
'O
ooeo
t^m 00 1^
-5j< 10
"0 03
C 03
-eo
O 03
S" s"
^-co
0
-CO
00
11 1 1 a
II 1 1 .2
! 1 •*'■ 1 1
1 1 1— 1 1
!-
co'
- 1 ' T-T 1 ' D.
1 i is i ia
1 \oi \ i
_o
_o
~ 1 12 1 ;
: i.2 i i
"S
^
CO -^
.-i
o
1
s
o ',.2 :o
1 i ii 1 ;
s ININI
§ 3 : ;| : :°
o o 1 12 , '
O O t-i - O S-c o
- a ® o a ^ o
°3g§3Ss^2
1 l3 1 1
Mali
1
3
0
a
1
u
H
O
H
•^ 1 1
§ 1 ;
.2 1 i
II
M? M § S
1 jo ; 1 0 o'
J 00 § J 00 S
35 -^ 0 S -^ Q
i i 5 °
II Ph .. tl
' ' 0 §
i i g s
cn'2 S
2 5 1
|3
W W fl
lilli
0
«^
So
'0 "g
o o m
■-2 " aiS ii
0 a. "I' 0 (B
a;
38
0 fe
.^
52
0 a3
1 o 2^^
0
t>o
0°
<M
OJ
00
"—I
101
gj'^
(M 0
<M(M
1?'"
OCO
^c6
ui ic
'~-<l.
C *;
.ic
.»c
.-*
35:
^
cc
im"
CO
T—
<'Z
1
CO —
»r; «
(M(M
CC !M
-^iTf-
■c
•c .
OC .
iC .
1
%■
■<*«o
.r-'
t-t^
C: CO
c -
-co
■"Ico
-CM
Kj
o 1
ce p
■0
CO
CC
•c""
u
5 !
^ i
1^
>. 1
g 1
lO <^
CO 05
OC
^ir-
c —
o
•c .
C: .
m .
c: '.
h
3
^
irio
(M-.
CM^SJ
(M iC
cS
.iC
• iC
.>c
-■^
-co
oi
CO
t^
^ 1
CO
t-
, ex.
Oi -^
!MCC
■^co
OC C-1
r^i-
oc .
^ .
jC ^.
3
>^i^-c
— Tf
(M CC
^ <=.
CO d.
-Tf
>- o tx£
CO'"*
cc
c6
cc
cS (i c ^
i-C:
t^— <
!M —
,
C-. C--I
i-l
froc-
So
^.£
^-
cc .
1^^^
CC
<c'~
CO*""
—
■«^
<^>s
■^
CO tx.
CO !M
C M
— OC
X "^
X oi
CO OC
5§c
c
c;
i
iC CC
-HOC
c —
s '^1
u^ ic
OC .
OC .
C: .
— o
ic--c
(N ^'
C C£
1^-^
•g&
""
c >-
ix.
!
rS
t^<M
^, __
CO t-
T-O
1 x: >i jL
1
go
:=o
^cc-
S iC
cooi
:s
5 3- w
■^
s
S||§
0
c
i
li|i
s-
^r^
^.^-
s^-
-3
— CO
§S
t- ._ c;
"bx.
nr
J
-H 0
ct-
72 —
1- u'-
■0 .
0 ^
TfCC
C. OC
?j CO
£ olS
^.cc
-CO
s""
CC'^
0'^
'C? c
^
CO
C-.
01
c-^-"
""""■
■"""
..
0. T,-
:x t-
- rj
^~,
S CO
c; c£
-iC
^-ro
£ c
I-'*'
C TT
C-.
'^
CO
«n
CO
i
1
1
0
§
0*
CO
g
cT
iC
c_ ,
~"
ic
ro '
'-
<c
.£
CC
c
1 '
0
^•
&.
3 1
"3 ' '
c ;
M
-
CO
i
tx.
1^
<
<
^
3 ■ < rt ,
1 ■ ? 3 ; ,
c ; 0^ 5 §• J o<^
3
OC
e
C
iji
c S-^
siz
K
31-:
^8-:
f !
^ 3ii
m
c5 ^ 3
« 3
c/-, ^ C
0 0 g
c/^^S
r- 1«S
•S^leg
g^8
^1§
m ^ tL
0 *J ?l
•^3 Co
•^ -^ i.
^f -^ t-
.2 C S
iS£
"c 0
S -•'^ P
■G^^
ooh-
^^^
T^^
S
CC
§ =
co_
i
102
Table 11,— Disposition of Persons Formally Charged by the Police, 1965
[1,781 cities; 1965 estimated population 57,761,000]
Charged
(held for
prosecu-
tion)
Percent of persons charged
Offense
Guilty
Acquitted
or
dismissed
Referred
Offense
charged
Lesser
offense
to juvenile
court
TOTAI__
2, 058, 421
67.5
2.7
15.2
14.6
Criminal homicide:
(a) Murder and nonnegligent man-
slaughter
1,997
797
3,386
14, 655
31, 275
69, 242
152, 968
39, 794
44.7
35.4
30.7
34.0
34.9
24.8
38.3
21.5
18.2
10.5
13.4
12.7
15.4
7.5
3.6
6.2
30.1
45.7
32.5
19.1
34.9
16.2
13.0
11.8
7.0
(6) Manslaughter by negligence
8.4
23.4
Robbery
34.2
14.8
Burglary — breaking or entering
51.4
45.1
Auto theft
60.6
Subtotal for above offenses
314,114
32.6
6.6
16.4
44.3
Other assaults
87, 294
2,048
9,754
18, 864
2,626
7,304
29, 546
20, 825
9,042
23, 149
16, 545
36, 471
21,604
94, 937
76, 985
753, 577
255, 333
52, 044
226, 359
50.5
17.5
61.9
70.6
70.3
38.5
22 2
57.4
69.2
54.7
46.5
55.4
62.9
78.6
65.3
89.2
73.9
76.6
50.4
3.7
4.5
10.6
3.9
3.6
5.7
1.6
6.6
4.5
7.4
8.1
9.2
2.1
11.3
1.5
'.&
1.5
1.1
33.3
10.9
17.4
22.6
21.6
29.1
18.2
20.2
24.9
16.8
38.0
34.4
28.4
9.6
14.9
9.4
17.0
17.0
17.0
12.4
67.1
Forgery and counterfeiting
10.1
Fraud
2.8
Embezzlement
4.5
Stolen property; buying, receiving, pos-
sessing
26.6
58.0
Weapons; carrying, possessing, etc
15.8
Prostitution and commercialized vice
Sex offenses
1.3
21.1
7.3
Gambling
1.0
Offenses against the family and children.-.
Driving under the influence
6.6
.6
18.4
Drunkenness
1.0
8.5
Vagrancy
4.9
31.5
Table 12.— Offenses Known, Cleared; Persons Arrested, Charged and Disposed
of in 1965
[1,
657 cities; 1
965 estimated population 56,554,000]
Type
TOTAL
Murder
and non-
negligent
man-
slaughter
For-
cible
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
break-
ing or
entering
Lar-
ceny-
theft
Auto
theft
Offenses known
1, 678, 074
403, 534
24.0
385, 474
310,096
80.4
100, 364
58.4
20, 372
11.9
51,031
29.7
138, 329
44.6
3,015
2,709
89.9
3,177
1,987
62.5
884
47.8
362
19.6
602
32.6
139
7.0
6,349
4,163
65.6
4,708
3,380
71.8
1,028
39.9
447
17.3
1,104
42.8
801
23.7
41, 762
16, 055
38.4
20, 904
14, 606
69.9
4,931
51.3
1,852
19.3
2,825
29.4
4,998
34.2
66,012
48, 087
72.8
41, 462
31,007
74.8
10, 680
40.6
4,744
18.0
10, 881
41.4
4,702
15.2
387, 538
99, 217
25.6
81,325
68, 430
84.1
16, 838
50.8
5,098
15.4
11,191
33.8
35, 303
51.6
981,189
184, 670
18.8
185, 497
151,482
81.7
57, 656
69.6
5,431
6.6
19, 760
23.9
68, 635
45.3
192, 209
48, 633
25.3
ARRESTS
48, 401
Total persons charged
Percent of arrests
39, 204
81.0
8,347
Percent of charged
54.0
Adults guilty of lesser offense-
2,438
15.8
Adults acquitted or
dismissed
4,668
30.2
Referred to juvenile court
23, 751
60.6
103
Table 13. — Police Disposition of Juvenile Offenders Taken Into Custody, 1965
[1965 estimated population]
Population group
TOTAL
2,877 agencies; total population 95,096,000:
Number
Percent
TOTAL CITIES
2,294 agencies ; total population 76,144,000 :
Number
Percent
39 cities over 250,000; population 31,177,000:
Number
Percent
58 cities, 100,000 to 250,000; population
7,850,000:
Number
Percent
137 cities, 50,000 to 100,000; populatioi
9,456,000:
Number
Percent
GROUP IV
319 cities, 25,000 to 60,000; population
11,059,000:
Number
Percent 1
GROUP V
088 cities, 10,000 to 25,000; population
10,571,000:
Number
Percent
GROUP VI
1.053 cities under 10,000; population
6,031,000:
Number
Percent
SUBURBAN AREA 3
1,163 agencies; population 26,222,000:
Number
Percent l.-s-
RURAL AREA
494 agencies; population 8,806,000:
Number .1
Percent
Total
833, 507
2 100. 0
741,353
100.0
261, 195
100.0
99. 671
100.0
101. 630
100.0
115.831
100.0
104. 949
100.0
58, 077
100.0
220. 293
100.0
33. 425
100.0
Handled
within
depart-
ment
and re-
leased
Referred
to ju-
venile
court
jurisdic-
tion
Referred
to wel-
fare
agency
Referred
to other
police
agency
389. 278
46.7
383. 875
46.1
24. 146 22. 114
2. 9 2. 7
348. 827
47.1
339. 651
45.8
100. 532
38.5
48, 731
48.9
55. 531
54.6
59. 669
51.5
55. 105
52.5
29, 259
50.4
124. 083
56.3
9.895
29.6
22. 865
3.1
139.911
53.6
44. 649
44.8
39. 848
39.2
48. 640
42.0
42. 594
40.6
24. 009
41.3
82, 769
37.6
18, 846
56.4
15.862
6.1
1.415
1.4
2.111
2.1
1.442
1.2
1. 265
1.2
770
1.3
2.142
1.0
661
2.0
19. 674
2.7
3,798
1.5
2,950
3.0
3,404
3.3
4. 072
3.5
3,564
3.4
1.886
3.2
912
3.6
1,237
3.7
Referred
to crimi-
nal or
adult
court
2,786
8.3
1 Includes all offenses except traffic and neglect cases.
2 Because of rounding, the percentages may not add to total.
3 Agencies and population represented in suburban area are also included in other city groups.
104
Table 14. — Offense Analysis, Trends, 1964~65; Percent Distribution anil
Average Value
[646 cities 25,000 and over; 1965 estimated population 75.400,0001
Classification
Number of olTenses
1964
1965
Percent
cliange
Percent
distribu-
tion
1965 1
Averagie
value
Robber v:
TOTAL.
Highway
Commercial house
Cias or service station.
Chain store
Residence
Bank
Miscellaneous
Burglarv — l>reaking or entering:
TOTAL
Residence (dwelling) :
Night
Day
Nonresidence (store, office, etc.):
Night
Day
Larcenv — theft (except auto theft, by value) :
TOTAL
$50 and over.
.$5 to $50
Under $5
Larcenv— theft (by type):
TOTAL
Pocket-picking
Purse-snatching
Shophfting
From autos (except accessories).
Auto accessories
Bicycles
From buildings
From coin operated machines...
All others
82, 938
42, 718
17, 125
4,660
2,200
7,688
659
7.888
609, 821
150, 390
136. 034
293, 937
29. 460
1,438,341
414,310
781,814
242, 217
1, 438, 341
13, 692
24, 205
106, 515
285, 479
288, 722
227, 170
241, 695
38, 772
212,091
85, 999
+3.7
44, 164
17, 337
5.050
2,360
7,788
784
8.516
+3.4
+ 1.2
+8.4
+7.3
+ 1.3
+ 19.0
+8.0
+4.1
161,119
152. 758
291,230
29. 496
1, 433, 647
+7.1
+ 12.3
-.9
+.1
432, 866
773, 341
227, 440
1, 433, 647
+4.5
-1.1
-6.1
-.3
14. 006
24,011
112, 361
279, 717
289,711
221, 425
262, 958
24, 038
205, 420
+2.3
-.8
+5.5
-2.0
+.3
-2.5
+8.8
-38.0
-3.1
Auto theft -
100.0
51.4
20.2
5.9
2.7
9.1
.9
9.9
100.0
25.4
24. 1
45.9
4.6
100.0
30.2
53.9
15.9
100.0
1.0
1.7
7.8
19.5
20. 2
15.4
18.3
1.7
14.3
$254
113
421
109
534
391
3.789
203
247
274
223
231
84
236
23
2
100
45
27
110
40
28
159
19
115
1. 030
Because of rounding the percentages may not add to total.
Table 15. — Type and Value of Property Stolen and Recovered, 1965
[646 cities 25,000 and over; 1965 estimated population 75,400,000]
Type of property
Value of property
Percent
Stolen
Recovered
recovered
TOTAL -
S629, 700, 000
$324, 500. 000
52
Currency, notes, etc . .
61, 700, 000
52, 200, 000
13, 100, 000
25, 100, 000
332, 900, 000
144, 700, 000
5, 600, 000
3, 500, 000
600, 000
2, 500, 000
290, 000, 000
22, 300, 000
9
Jewelry and precious metals . . . .. .
Furs
5
Clothing- . ...
10
Locally stolen automobiles
87
15
221-746°— 66-
105
Table 16. — Murder Victims — Weapons Used, 1965
Num-
ber
Weapons
Age
Gun
Cut-
ting
or
stab-
bing
Blunt
object
(club,
haimiier,
etc.)
Personal
weapons
(stran-
gulations
and beat-
ings)
Poison
Explo-
sives
Other
(drown-
ings,
arson,
etc.)
Un-
known
and
not
stated
TOTAL
Percent
8,773
5,015
57.2
2,021
23.0
505
5.8
894
10.2
20
.2
5
.1
226
2.6
87
1.0
Infant (under 1)
1-4
116
198
121
97
620
1, 062
1,128
1,008
1, 029
888
694
529
384
276
172
130
148
173
7
25
43
45
383
690
747
628
615
528
395
289
203
132
80
55
44
106
6
4
10
14
150
262
260
264
270
222
166
113
85
64
38
22
25
46
6
•22
11
10
29
37
39
35
33
50
44
50
40
29
25
17
22
6
64
105
35
17
37
48
55
60
78
69
70
58
45
41
23
29
52
8
3
2
2
29
36
19
9
12
18
16
14
20
15
10
9
5
6
1
1
3
3
1
4
5-9 --
1
10-14
2
15-19
1
1
2
2
2
1
2
i
2
_
f
6
20-24
6
25-29
30-34
9
5
35-39
10
40-44... -
3
45-49
6
50-54
9
55-59
5
60-64
4
65-69
1
4
70-74
6
75 and over
9
Unknown
4
Table 17. — Murder Victims by Age. Sex, and Race, 1965
Num-
ber
Per-
cent
Sex
E
ace
Age
Male
Female
White
Negro
Indian
Chi-
nese
Japa-
nese
All others
(includes
race un-
known)
TOTAL
Percent
8,773
Vioo.o"
6,539
74.5
2.234
25.5
3.970
45.3
4,693
53.5
51
.6
16
.2
6
.1
37
.4
Infant (under 1)..
1-4
116
198
121
97
620
1,062
1.128
1,008
1,029
888
694
529
384
276
172
130
148
173
1.3
2.3
1.4
1.1
7.1
12.1
12.9
11.5
11.7
10.1
7.9
6.0
4.4
3.1
2.0
1.5
1.7
2.0
77
95
69
64
464
802
857
765
789
644
541
424
296
212
129
90
103
118
39
103
52
33
156
260
271
243
240
244
153
105
88
64
43
40
45
55
71
133
82
56
264
460
409
394
394
380
327
263
217
178
104
87
102
49
40
62
37
39
347
592
709
604
620
500
363
262
162
95
66
39
43
113
1
2
.-
3
7
6
8
9
3
2
4
2
1
1
4
1
5-9 -
1
1
10-14
15-19
3
1
2
1
1
2
1
1
2"
1
2
20-24 .
2
25-29
2
30-34
1
35-39
3
40-44
2
45-49
1
50-54
55-59
3
60-64
2
65-69
1
70-74
3
1
2'
1
75 and over
li
1 Because of rounding the percentages may not add to total.
106
Arrest Data
Tables in the following section provide certain personal characteris-
tics of indi\'iduals arrested for all criminal acts. Arrest rates and
trends are shown for city, suburban and rural areas, as well as the
United States as a whole. Tabulations are published containing
characteristics of persons arrested by age, sex and race.
Arrest statistics are collected annually from contributing law
enforcement agencies and the figures used in the tables this 3'ear were
submitted by agencies representing 69 percent of the United States
population. In using these arrest figures it is important to remember
that the same person may be arrested several times during one year
for the same type or for different offenses. Each arrest is counted.
Further, the arrest of one person may solve several crimes and, in
other instances, two or more persons may be arrested during the
solution of one crime.
Arrests are primarily a measure of police activity, as it relates to
crime. Although police arrest practices vary, particularl}' with
respect to juveniles, contributors to tliis Program are instructed to
count one arrest each time an individual is taken into custody for
committing a specific crime. A juvenile is counted as a person
arrested w^hen he commits an offense and the circumstances are such
that if the offender were an adult, an arrest would be made.
Arrest data is primarily a measure of law enforcement activity,
but it does provide useful information on the characteristics of persons
arrested for criminal acts. It is a gauge of criminality when used
within its limitations as must be done with all forms of criminal
statistics, including court and penal.
10:
=3 20.2 -t-o.
1 « p^ lO
•O ^ CO 00 o
IC . r^ .00 . (N . -5)* . t^ .O .1-1
t0(rCOC0O'0-*'t^Tt<0>030jT)<l0t-H<
T-T rt" lo oo"-^ ^ ^ <»
uO -^ ^ ' ■ ■
r-H (M
I lO .-I >0 CO O 05 (M I
t^ ^ t^ IM 00
o ro ■* lO t^ -^ (
Tf . Ttl .02 . '
"O (N O CO 00 O I
'COOCJOS
.o .o .
. ^ CO -^ t^
iC^t^lCOOOiOOiCCO-*-*
.05 .00 .CO .CO .00 .
iiO-^COCCTfCO^CO^Ol
"^ 05 M JS § '-3 O
Q^.2^gJo
i<*<eo
CO o
r-2S
a, g
so &
;r oc o oa tr-
Ox — or
>"
og
a.t: o o c3 ~^
i- X "^ "o n -
j;K ^2,01 OCO
~ o o R-a o
ScoO.gSt-
I- 05 o ^ ►r„-
O O'--- R2
OS.
:d Q "O al
■I K .- oo
2 -. OS'S-
.t-co-2§
O c3~
'5.^
gs
^ ^ --I ^ (M CO
in lo CO ^^ 00 o CO (
.00 .CO .00 . '
^ 35 00 <
00 r- OC^CO
CO CO
.-co
00^
t^OCOOOOOC<I-*(MCOQOI:^
-H .o: .-rf .00 .— ' .00 .
■^COCOTfC^'O.-HCOC^iMOOO
C0<NOC0-*t^C^0000(MiOO00C002(M
O .00 .O . t^ .00 . t^ . t^ . IC .
CO(M'-irHiCCOT*-OOOCO'Ct^I^'^COCO
^^ >rt< ..O .,00 ..lO
rt lO '^ — X (N t^
Tti-rt<C0Tt05COCO>OC0X — ■
CO .O . "M .CO . "O . t^
XXCOTfcOOi-^C^COTfcOC
-CO .-—I -co
O —I CO O CO CO CO •
C^ .CO .(M .CO
'^ CO C^ C^ CO ^ CO I
'OCOOJC^-hCOOtP
.05 . t^ . t^ . C<I .
•O5^0t-CST^C005
CSIOOC^»C-*<NCOi-Oi.Ot^CO
■^ .1^ .t^ .X .O .X .
iCCOiO-^iC^-^lMOSOt^cOlM
-Hor-cooicoio-^^^T-icocoi*
t^ .■>*< .CO .»0 .O .CO .-^ .
C^!Nt--iOX^^COX-^-^l:^^CD
CO t^ O CO Oi X O '
, O . iC . O . (M
O O? iC -^ LO CO iC •
-CM -co
■^^Tt<-rfit^XC0XCTi^XO-'*<05.-iO
T}< .OS .■* .CO .rf . t^ .CO . "O .
t^coc^iMosr^x^coojo-HOcoioio
-co -Ir^ -co -X -05
CO 03 05 -H t^ CO -H
CO (M
CO .
coo
: CO O CT. iC 1
^COOi'C-^COCSlCCCOXTj'CO
-r-l -t- _-0
C^--i-*C<J(MCOCDi-l
o CM X ic i-o -* Tf CO -f — -o CO o I.-: CO
. CJ .CO .CO .O .X . -* . Oi .
COXrtOX^^CDCMCMOiOCOOt^
-■"^ -t^ -uo -co -X
-^ X (M CO CMr-HXC005
COCMXCOt^-rfCOCM-
■ . i-i . C
CO CO lO ■
-(M
.. Co
ij in O o
r: (M (u _ 'x: o
03 p,2
t^ CO
O »0
•O CO
eo >ri oo cvi l~ 00
(^©(MCQ^OJt-'^COCvieOOS
.CO .t^ .^H .03 .C<1 .CD
i ■>:*< ci CD t^' I- CD t- ^
1-' — < eo' '
(35 OO
-H CO
CO (M O OO i
Oi • --H . (
C^ CO M CD •>:}< .
fc: O r; "^
c2 2
r-j Si a- I-
3 CJ (S
3 fcj^
o
s
o
sts ;2
<=> — 2 ^==
o__-5o_.~o
o~ c; o ^ o' I —
O c^ O C3 O +J O
—1 m ^H aj „ ^ ..^
: -p c> 3 ^ §5
o.(u ; s.^ «^ s^ s , s
go. ] a 5 a [ aY a^^ a
3!^S'33'*c3c3c3pcc+jc3
o o bc ;^ c5 3
f^ « <5 « >^ <1
o
o o
C3o
o fc o
O.S o
_ , o c o_
o' 1 o' 3 o"
O I O c o
^ I ^ o -^
^^ ;^ , ^,^ s->
r- o , o i- 0.1
g a > ac a
^5 '^^
o3 ts I "t: >*^
X3
O <1
c« fcj c3
i^ H
s.§"a
.2a-2
c3 ^ 03
'o
108
.CO .oc ." .ic .— •«; .-^ -02 .CO
I «0 .— I !C ■*! CO t^ CM ■
l~ CO CT tC t^ 05
•^ cc c; c C5 CM
^cOTt-cxicocc— 'i^(M<raCTj-;cco»c«r-c:cr)ocoocct-cc
■^ .-^ .^ .CO .— .^C .— .t- .^ .« .05 .oc .Ci
<Mt^C0CMO-*X«CC0<MC0-rfC00C.--0-. >o— .-^i^icu:,— co«c
.CM .^ .—■ .Tf .Tj< ,C >C .CO -co -co -Tf .IC -
05 rt< iC i^ GC-Hic— CC-^^CMC ^COIC GC CM
r-.-^COCO0C-< — ^-^CM
05 C^ «C t^ CM Tti CO ■<*i CM r-1 CC ri iC iC CC CM oc CC CO «: C oc 03 t^ C '
I- .CM .O . O .O .CO .CM .CC .-<.GC .C .00 .C
CO O ^ »C CM CM CC 03 iC CC oc O C T)H C5 t^ O C ->*• CO Tf CO ^ CM C •
.oc -CM -^ r^ -CM -'-' -■^ -22 -C -CC -'
t^CM ^ CMt-CMC!5CMiCCCO-<tliC^
. 0C0Cr-(iOCC0C«:cO0CCM
-I~- -t^ -«C -»C -32 -iC -I
CO— ■COC5O5CO00 C0C05C c
;.-HCaOr^«:«cocicOt^OocCMcc^^„,^
.OC^ .r-4 .C> .oc ."C .O .CO .— ' .O .— .^M .w .
■i^(^n<-h^r^_<OcO— >CCMCCCCOCMOOCCM002C— '-^CMC
-co -C -I~- -t^ -«C -»C -32 -iC -t^ -«C
s^^.g
oc cc t^o« oc >
lOCMCCCOCiurOCOCOCOCC
• t^ CO "C 02 oc CM
■ CM CM --I -rtt C C: CO 05 33 ■<*< 02
I- -^ C CM g CO
CO cf oc cc r- ic
-t- -co
^■OC<:CCMt^r-^CC--HCM«CMiC-*OC«C-<*<
COCiOCCC3COOC'«COC'
t^ . o .CM . — * . r^ . <:j2 . c^ . ^^ . 1-H . '.^ . u, . 'si^ . vi_ .
-^03«C03CC t- r-iOCC-H(XC5 t- ^ — OCMCMOOCOiCCSCCt-CCC
-co -— < -CM -co -OC -— ' -co -ir^ -C2 -"** _-1^ -irt _-0C
IC CM CO iC -^ r- IC ^ CO CM O CO CM 00 ^ C t^ CT
oc" ^ t-* ■ cm"
<Ji .32 . — I
I- C oc ^ 32 CO
CM CC « oc oc CM
-r^ -Tj- -co
t- oc CM
CO 05 >o o t- eo
«> .00 . oo .
CO CO m o 05 »o
•CO-^C3CO-<tiOCCcC,-i-HTfit^CiCi— l'*l<35-^C2l^-^C2t^CM^H
— .CO.t^.-^.— .O.C2.0C.«C.-^.
-I--CMOCCM— t^-^CO'Ot^OCCO'CC-H-^'^**
^ -oc --^ -cc -CM -CM -ic -OC -Tf -c;
CM--H(^~CCXCOiCiC^iOTfC iC — '
32 CO iC C IC C «C
■CC^aCTtl-rtlCMTt<COOOr-<CO'^CCO«CCM5C'*'COOCSCO-
.00 . irr . rH .CM . i^c . t^ .CO . <c .CO .CO . >c ..
r-«C^C0C0'nCCCCM0CCM00':t<0202<»C0l:-02CMCCt^OI
-cc -oc -CI -Tt< -o -^ -t^ -oc -ic -co -IC -t^
■rf — <CMCC CMCMiC^-^«C^5CCMrH02-<*<CO 00 <
ICO32,-H0C Tt<OC-0C «Cb-CMCMt
-^ cr t- oc c^i oc t-
iC .CM . C . C _ -
TfCiOCMCCtr32CCOOCTt<CMO-
-Iff -Tf -0_-Tt< -32 -•* -
^ CO oc r.- C .— I— -^ r- oc
IC ■<*< ^32 I
-^ -r- -co -<
X IC CM ^ — Tf oc
•o <* OS ^ rj< CQ ^ I
o .CO .OS . oo
(M eo O ^ 0» "O OS '
"•-<oii^o»~c<j(MCOooot^cooieooi'
I .—I . •^ . <M .^ . t~ . ■^ . •^ .<
)00*000'^.-liO'^Oi05COeO«00*eO(
-00 -co -'* -(N -oo -05 ->n ->0
I ^H 03 .-I >0 .-< O •^*< O — < CO CO OJ <
I M< I
3§E
' fe o « S ^ m
£ tt . - tt.2 a S
W <D M - ^
d lO
>-i 3 Ui
<D e: (D
9 o «>
^ gd
O tn O *^ <
O-fiO
2c2
O OJw
O wo
®5C a3 !=l
con
o wo Co
d'.Hc'Sd
— "^ o .t; o
r-H O^
n oj-o oj
(S ota-ti "Stem's 'S'S -5
^ p:
c3£c3aa3>sojMo3'r3C3nc3^(S'Sc3&a3
J ^^ & § s ^^ s-^^
109
t
g
On
»*^
a
■S
a
S
o
«
u
t".
o
H^
C3
oc
c
0)
-J
fin "
iffliOOiOOOw5t^(N
I Tf< C^l CC CC CD CC t^
++++++++
I'^iocc'oco ocTco' I go"
00 IC ■>! M 30 ^5 --I o
lOOtCCSIMCOOOO
c^^->^oiicccooo
•<*l I CC CO ^ (M CD Tf
+ ' ++++++
1— I »C CX) CD (M C^ en
(M re TT -^ CO :d ex;' 00
COi-H^OQOOt«CI3
COt^t^iOOiCC5.-Ht^O>INOOCOC^O:
■^ CO 3^ CD CD ^ ^ S5 30" t>^ -^ -^ »C l' ta! irt' I
-Hirt Tt<lM -HI CO -^ I — I «
'+'-?
CO Tt< CO t^ O 05 C-l -H CD O "M I^ or O 05 0-1 t^
iOlO02CD»03Ci0C5C0-M00TfOClC03CD-<*i
a0C0CDO5CO»Oa0»O>-HO5C^fMCSCDCDTt<00
lO 00 CD O GO CO O W CD CD C^l O ^ ■* C^I -^ i
CSI CD CD IM 02 Tt< CO Tf" O C; C'l >C lO O 32 CD '
r-<CDCD»-l<MOOC^'^rfirtC
i 00 00 O >0 O CD IC
I^ CO IC 00 t- •* OC '32 35 IC 00' t^ r-H C-1 I
i^o«5-^-^-<roc^ioooc"o6-<#^^:
00 CO t^ O <M CD _HO -- C 1 — 35 lO Tj< (M CD !
" ■ ■■+++>
+++:
[+ I ++++ 1 + I
cj5-Hir:;Tr=5ir;occ:r3ccj5Tr'— occ^-— ir^oo
iCO-H-^ia"-*t^i-lCiCO>O0Ct^0C>O»C3:
OOOrt<iOCOCDQOt^lC-^'-i(McOrt3300!M
-H~cs'rt'~'.^""i>r oo'co't-T ^'■o'cd''oo''»c "OIM'
(M CO ^ O lO F-
.-^35-— iO;1t^^CO(M.-H-^>
I 00 (M 00 ■ " " " "' "
I CO t^ --D CO
I 55 O lO t^
rt ^ (MO 00 T-l ,-(
lOr-<^ X-HOO
■^OOlCO'^OCO
++++++++
^':5 ?= K f= S£ -n r:: "2
I r^'
35 t^ O 00 CD Tf I
t^CMi-nOt^CO-HCDCO
.— iCDr-i(MlOC^l>]iOXt^-^iC'«i"-*T»<00CO
(M I <M CD CM rt I -^ -^l-H TH I I (>4 (M to
+ ' ++++ ' + I ' ++
I + I
C-liOOC— '35-^0:^i--;35-^XCD35035i.O
-H tc O ^ 35 M CO O C^l -H CC Ol X CD O r- Tf-
t^co— (>ccD(M^^^OI:^co■*'-o»oxcD^7r^
35" ^"^ x' Co" Cd" t--^ ^'' 1^ 3? tC D5' x' -4" TlT r-T (M" 00
COCMCOr-l^5(MTtlCOXCO•^'^OL.-35(^^TJ^
-H rt ^ „ ro o
! t^ 35
I t^ CO Jt_ "^r i—" t>i r^ ^^- — ; i— ) -^. .— 1 ^ _
i ■># CO rt C^) X CD X t^ t^ ■»*< O t^ T-H CM (M
" Tj^' O" irf 3:' ■irr" O" r-n" co" x" .-T 1
3 C3
:o >
tjc.2
ci
gg
^5
0fsiWS?^?Hx2^0f
~ S o "^ o .2
5.5 ? M^'p"
110
\C o
o
C
<M
a
cC
»c
«
h
' CO ic oc C5 "t: CO ^
4-1
1 +
++ 1 +
Oi— iTj-^Tj't^CC^
' <M « 00 '
CO-^CCCTxOCCfOIM
(M tC CC 'O CO
OC O CO lO t-- Tf I
+ I 7 +++ '
■;C ^ « Cl !M CO (>J CO
l^ CC t^ O »C CO ^ lO
iC^CCt-^OCIMOO
: CO CO c -^ cc
(NIMCIOQ-H&CCCCC
CO 0-1 -^ IM t^ "O -H 1^
^ (M t^ CO t-H CC i-H CC
iC -^ ^C C-1 lO
I OC C^l O t^ C5 (
<oc o t^ >
CO ':c t^ca I
I +
l+V 1+7+^
cc cue iC' o CO oc oc CI ic -^ c CO c) '^ ^ C' a> cc I
IO3O>00>Ot^t~»-Ht-
T-H -^ r^ CC
^ d T-H CO •
t^rtfO^CO-<t"-*0.-t,-i-
rtccior-it-- co^--cc Tfcoa>coocca(Ncct^(M
C0'C'£<M05!CC->*<t^>OTf<
TtCOO'CCC-^COClCC
—1 CJ —I 'S- ■«",-( CO
I t- OC CC O i-i >/:■ (M ^ Tf -H C5 rf l^ 05 IM l^ ■* 1-H OC' CC
"+' 1 +
,— I If:, ic ic
05CC '
CC C4 CI ^ 05 -^ (M I- CI -
'^'+77+ 111+'
I ' ++
t-H TJH CC CC CI
OTCO'cfr-n"
' lO t^ CO -H CO 00 '
O CI t^ ^ 05 rt I
03 tc — t •* c t-
CO CO CJ ^ t-^
ss
CO — I "O CI C CI t^ CC IC 5C CO I
>0 iC ■* OC 05 Tf CC -^ >C
+++T+ +++7
»C >0 02 05 CO »0 CO C I I CI cc
++ I I ++++ ' +
iCi CI lO CO iC
) ic ^ ii; CO tc
rt tCCC C OC CO
t- t- -H CC OC CO
— CI OC' C — 1 05
>o iC c t^ ^ cooc-^co
CO QC CI C5
C^ CC (X
CO ^ CO C5 ■
.-HCO'O c
occocccc.iiC'a5co'0-<*''OC5co
iCCCC'C'T'OClCO'CCCt^CJiO
OJCCrfi^ COCClrt'^CcC'C.
■.*r cf cf io" 1-H i--r lo' <:£;- (xT
iCt-C^C^CICt^CD
t^ ■* CJ CI »C -^ I C5
+ I ++++ ' I
T— 1-- CI C CO CI ■:£ 50
»C C5 IC CI «C CC >C CT>
«c CI oT cT <£ ■^' -*' r-T
cc o 05 1^ "C c; t- -H
IC CC — I t^ -^ C5 iC 03
C CO CO CI CC O OC CO
«;CQC5-HClt:^cc-*i
CO iC r-< 05 "-^ CCCCCC
I CO
C^ !C CC ■*
t^ .-I I CO --I C rH CC
17' 1+71+
^+c^_i_^
ocicrcic ic-Ht^t^ co-Hca^co-*»o-5j<ccM!^3'C
SCC-'OC'C t--iCiO <^QC^^COCCt--0CCOCt-;5-;-<
COCIQC-S^OC ^ '^Ci'=. t-'^CC^CC-^CCC-HCOt-t-CC
cc oc. 00 00 cq CO ^
00 O5 0C c: o
It-h05iC cCoOCCCt^'O.— iCO^O-^^hOJIO
joOtCCO^OC 0OC5t^Tf< ClCSiCCCCiOrt^OOCC't^Ct^
ICC oc CC «c
11
»2 cs o;
d.^
:22
I tii
c o tx 3 cc: 3
5 i2 o £ £S
^ s >^^
? C * c i,'
5 .S; .S
' =« dt:
Ip
cS ® O
si-
c ^ c
o S o ^ ?
111
I — O -^ iC C-^
I cc t- ^ CO r-
• CC (N ^ 00 O
> t^ e^ o o CO c!5
I t^ IC O -H c<5 (N
. O lO O 00 CO t^
of CO t^"^' CO
O — — »C. t^ '00 00
lO 00 00 '00 — I iC o
—ll^ I- 32 00 CO —I
CO O CO
CO'CO-^IM^OO"
GO O — Tt< Ttl — H .
t^ O GO 00 O CC •
^ — lO 00 CO t^ ■
^ ^ eo^c
I t^ ^ CC 35 (N O 33 I
I 00 o o ic ;r: ^ 3i '
«N (M IC O -^ (M !M :
^Ct^ '*O0CO0C^3500CO
rfCn— ':f{MCOO-*'lr^t-CO
C^ t^ IC (M iC t^ >-H (M CO C5 00
C^ (M ^
I >0 »0 lO t^ CO 0> --I
^rt (N ,-1
O lO ^ O t^ I
O-^O— .iClCCOiO
^ 5
^ 3
■<f «0 ■<*< -^ 05 Tt<
(N <M''oo''>o't--^
CO CO 00 CM <M iC
CC C^ 00 eg ■
rt 03 00 O O CO o
O 00 02 lO CD
I CO O O m (Ji •
<N 00 O Tf 00O3: ?a CM
r-'icof CM of "'cm'^'
00' 3: O CD t^ lO —■
CM CM ^ —
O -H -^ ■
t^ CO 00 ■
t^t^eO CO -^CCCO -^CM— ^COCOiCXOCM"*
COCO-* O 003iO iCOI00CM00i£0C^t^0C
COCOO CM OcOt- .-ilC^t^C0C3c032-^35
lOt^ — C^CMTfCMC
rH CM CO CM CM
COt^ C» CD 1
00 >0 -H O C
■<*< COlC CO
O CD — CD CD 00 O t^ — 1 33 >0 CD 35 CM •* ^ CD
CD O t^ 33 CM CM — I r^ O CO CD .— I lO 00 O -^ O
CM^^ 00 X-* ^ulOOOOOTjlCDt^
^S^^=^:2?5
I~C3CM*'
— CO » ^
t-~ Tf ^ CM t^
IC — Tf t- CM »-- 33 CO CD u- 33 r- 00
— r^CO L- CDCDr-CMt^OOCD^
33 33 33 — i-O C^ t^
— X >--: CD L-: 'D CD
CD Tf< c; ^ -H CM ^
Ofx-CM'— "--f CO"*" I t-*
CO r^ 33 r~ CO
CD-^CDCMCO COXCD —
SB'S;
CM 00 33 ■? ^ iS
CM* ^i" CM* CM* O* CO
CM X X CO 33 rr CD
t^ t^ 33 X C CO i-O
CM .-H(
CM CM -:f C: O) CO —
-^ t- 33 Tf X
33 Tt- X CO CD CM CM
* CO t--* CD* O* CM* O*
t lO COt^ CD :
CM 33 »C' I
. ^ L- t^ 33 •
i t^ CO 33 CO <
I CM CO CM X :
i-o — C; X
CO 00 t^ CO -
t^ <M*0"'0*'
-H ao ^ o i^
O — I 05 >o O o •
^ CM .
1 CO t- t^ 05
2u
-r c3 3 tuD
■M §
be c3
: o) i c3 fl w
s"© M 3 ^ a
g&^=:'
® 5 tc3
5^
.•;; 3
; ;
^ ;
1 1
C 1
l!fi
^ 1
; g
"o I
1 ""^
> 1
. n
1* 1
IS
^ 1
1 (»
.' tt)
•g
_o ;
'!tt
T-' '
?i.i
=3§
-;~ .r
S 5
o<;ciH;i;wco >^(1h
Zco
112
Q;
^
^
^
1 CO -^ "^ CC '^ C^l
^ fO CM t^ -^
»C (N 05 CC O OC CO <
cc cc CM "t 2J ^ ic ■
^ C CM t-
.-( X CC rt ,-(
I C ^ GC' O'l OC rH
■<J< T-H rH CC lO CM >
■X: e«5 CO >0 Ol t^ C
r-H ;C CO^ rH
C: Tt< O CO t^ CO Ol lO
0CC-1CCC0t^C0^O5
CXCMCS-^OCOCOCC
cdc^o^t-^c^i■
CO CO >o >c 00 or >o '
ococy^ost^coioo
OC^CMO^'^Or-H
CMr-.T#0COCC«CtC
•<*< IC rt CO 00 cc ■^ c
C CO C^) lO ■*! C^^ OS c
CO ^ "C O <= T}< CM C
I^ lO C 00 O C^) -"tl OJ
CMCO «>00(M
cococccmm cc-^»cc i^coc^i-^-^cr^t^ict^cc
CO t^ cc^c^l ic^-^ccocccio^cco-^co
CM rt t^ rf< -^ O
o ■«*< iC IC
CO CC OC OC CO
CC IC »0 TJH CO
/:Tf<iooooocoo20«o<ic
1 C5 r-1 CV1 >0 CO t^
I r^ Tt< ic c 05 »c
TjT ^ 0-f oc' TjT ic"
CicOrfTtic005'«*<X<CCa
QC^iCCOCCDt^COSOCCC
cciccscocot^ot~~c:-<o-i
■^t^CTf<Ot^t^00C5Oi— I
-HO-lOOOC^CO-^'OSCMCiC
00 Tt< CM C^l 00 C
tC' lO Ol t^
CO »o IC «
I c cc ■* C5 oc oo as
iC C-1 »^ o o •
C -H CO CO ■*
OC C^l 00 CO oc
I 05 CC ■* r-H >— I CC C^J <
. CC O C^1 CO C
•OOC CC 00
C^J t^ iC .-I
^CC ICOO
CO r^ rt ^ •
. IC. r-H T*<
Tfl »0 t^ 'iti
t^ lO T-^ C^l
■<*" X -^ Cs
>0 CO 00 ^
CC C^l -^ C^l 'M 00 X -^ -"^i IC CO
ic' cc" ic c' cr' cc" »o ■<9<' cT CO ic
lO CM CM >C CM
^ t^ CM CO
CO CC •<* .-H
CMCMt-Tt-T
^ Tt* 05 O t^ »-H C
CM CM t^ lO CM
■* X CO l>- CO
CO CO 1-H CO
eoc^iTfoi
«0 CO CJ5 «o
»0 X X CO
CiiOt^COXOcCCOOXt^
coxct^r^OJi^ccs-*-*
C5^C:5CO-*CMt^COXCMiC
rtCMCMCMCCCMCOCCCMi
r^ X 'O X CO
CM t^ O CM C
t^ CO -HCO
t>r rH cm"
X t^ X CC
rH t^CO CO
CO O) o >c
CM* cm"
Oiiocccc-^cc»cxcoc^io;
t-T of c^f oj" cc" of cc" r>-" co" cc" cm
rt< OS C -"^i ■*!
CO a> t^ CO o
CM »0 Ol CO
CiO»-iO]C»5CMCXCt^tO
iC X ■* lO O ■*! t- 05 CO t^ Ol
CMCC'lCCCXlOiOOOit^CO
o
M C3 +J
s&
sag
•p'O o
„ g s ^-2 ^
.5M3-og^'§g'|o
"2 O /2 23 .9 o -
O o'p S=l > 3 !
1/1 o
2 ^S 3 3 §
113
) C^ 05 lO O CT! TT
l^CC O Tj< l^ O ■
' CO CO OJ o c
l(M -^ ■* IM <
H'-i
OOa>i-IC00500iO
lOOOiOi-HiC'^'^
i-HOJc^cDr-^iooJOJ^osJidcdococ^coc^iort-cJo
CO -^ CO O CO 05 I
■OOi-IOO>OCOCO»OCOCCOi»OiCiCO
T)<(Nr^tOOCOt^>OiO<MtC>iMi
lc■lOC»coco^doo<^i•^-H■^^i,
r-< «; CO r-- C^ (N i-H
T-H CO O 05 OO CO lO C^ coco >0 (M t^ (N CO i-H i-H CO iC to
cDo<N ■ 'looicd 'oie^ ' ■ ^_^f-i ■ iri 1-H c^ 00 ■* i-i
>O5!N00t^COQOO5C:iCOq:
3i 30 rt CO C<1 CO i-H
2 fl
QOt^t^^cocoC-lco^aO
lOi-HOoaoacooscoc^oqiooiCSfN
!M l-H CO r-l >0 00 ^ (
' ' ' T-t a
t^ l:^ O a> CO »o
"0(NCO<
I CO CO CO>
1 coco
r^oo
~ooo
lO oo
lO CO >C CO O (N C5 O
COOi-^i-HlOt^COCS
CO^!N00C»Tf^.O
i(MC0(M00CO
)05(»t^t^COC5050r-II^CO.-lCV)COT
»C II -^ ■
05»OOOiOO(Mt^iOCOaOCOO-^COCO<MO
t^.-( (N i-H i-H 1-H 00 l:^ IM (M CO !>• 03
rH I—I CM
05C02ir-c<ir^i^0300O!
03 ■* CI ■* 00 CO :
IMCSCMOOIMCOOO-^OOOOt^OJC^CCiMOCl
(MrHOOS-^llOt— lOOOX'^CC^-^COT-HTflXT-lt^C^i
- ■■ ----- ■- ^ T-H iO ( "
CO.-ICO-* OCCO COOi-Oi
I CO >0 CO CO lO
'S"^^?^
• CQ o >n •^ i^ eo ■
i(X)05000>OCT><MOOClC5'0(MO^'*OieOC<lC<i
^ I -M I
Eh
!-i o o bc 3 cs 3
a; oi
§ o fc
o
p.
!.§^
^ > C3
'S.S aj
gas
O R fc
ag.2
c "&^'
c«
a o
5c
lfi><MO«
114
O CC 04 CO O CC -Tf •
c u~ — ic ic a: -H ci
< — I CS| O ;C CO t--. (M
CQ — I cc as --H -rh o '
■iCCOC<l»OCOiOCCi-l
a- —I
'SB
> r^ o cc o
' -H CO t-^ C4
1 M icr~>-<(N
i »0 CO CO (N -"il^
;CO(M'>:f<0C— <t^C^OrC!NGC5C«OeOT»<iCiOTj>OC
«Cb-Tj<cO(M-^rt«:i005-rf<XCJCCOl^t^OCiCCCC5(31 —
o i>^ cc" o r-^ (x3 1» !o' t^ ■«; CO i>; c» «; ^* i>^ e^' C5 ■*' c oc t^
OCO lOCOOlCO
• oc to O ■* iC '
' « CM iM !>• CO t
O -^ CC — I 05
O CO »0 03 CM
Tt< •*! CO C5 CM
I COCCCOTfCCCOOtC^— iClCt^t^'
I 0C't^TtiiO^05«rr-ic0CCGCCM'CTj''OiO-^(
0-«J<«:;iOCOlCTt<iOCOCCi-H03COCMCOOC'
lOO^r-HiOCOCOOC'«GCiOiC — GOCM— it^OC'COCM
CM — I ■* CO CC I
CO — ' t^ iC lO «
lO t^ CJ ■<*< CO -
> CC iC OC CO !C CM ^ <
' CM C5 CO C CC I^
-<cx3— »ot^<£><£>oocoo®Oico-H^.<^csi,-it^.^.^ao
CD^^tDOCDOCD'005(MO(M<3i>f2C<20'-l'^OiCOCi<M
I >0 O O -H CO OJ o
3
CC
1
<^ !- 2
•p ©^ ,
tj-p w o
c ^ c &
e-2:
-^5 ,
I td
c o tt 3 cs 3
tJH cs; < p; h:; *<
OQ
0; c
S^
o S 's
g <= C/2 i
?2 o
ZCCCJC
o c
5 U <B o
3 3
115
I
■^1
-i:
r t*
+ 1
CO Tj< O ICO
'+-^+
) CO cr; -^ 'O
1— I lO ■*! O CO
+++V i
O ^ 01 O "O
t- O C5 CO 00
r-l -H !M O 02
I ^ ^ O ;:0 OO O
C5OO-^35XOOC<ll^>C;CQ0
1^ IM Tt< O -- <M r-HO 05
Vl+i=^ T+IT
++ I +++++
Ttlr^iCCOOl --lOOt^'O t^CO^HOS — "MOlOCO— ICCCOCO
OC5-<j<ac-^ 00— ("MO •oocoo»r^--0-^--c;»cr^o— ig;
Oi-HlCOl C005COCO COUO •— I !:D0OCOC5i— It^COC^I
COiOOOOS CO-Ht^O t^C^ICOOTfi— it^— ICO— lO-IO
^C75C-1-J— < C0t^r)<O OSCOt^CncO^C^l-tl-HGCO-^'O
C5-HlOt^ TtlOOCO-* 00-* —I rtr-H(M —
00 :D C5 c^ o
r-l Ol —CO
-*l'-<00'O COUO— iC^OtO-^C-l-^XO^DOC'
racot^t^ -^t^-TtHco— i:Oco— i05i
I+++ T+l I 1 + 1 + 1^
I +
■ oooo
I O-l 13 05
lOOOr-H
COt^ClCD COOCOCCCCCOOiOOOOOOOCOCvl
30*— r T^-'^co'io' tdox"-* co'oc tc'ic ©'oo'cc c^f oo"
OlXt^ — OOTf<00C
::C rt — ( IC 05
O T^ 00 Ol ■* !
— < -^ CO — I o ■
ascsocict^— lOco^o-io
■:~-> ^ -# CO CO 05
^
X
b^
>:;
iw
»3
0)
.—
!>.
^
8
'"'
f2
o
1
fit
'it
(M
o;
CO
S
H
Cr. X -^ CC ^ iO ^ t~-
00 O CO »0 CO ■>*■ CO Tt^
+7++++ I I
! O CO t- --c t^
t^ O C^l CC — I — (
I IC iC t^
CO -H O t-- '
»C — I O lO -O CC t^ CO
>0 00 t^ 0>)
.COC0C0rf<^X-^— 11
•^X'-'iOt^XXTti
OS'OCO — OiC-HO
C -"ti !M CO C^l C5 •<*< »0
00 Ti5 c^i !>i lo co' CO* i>i I i
+ I ++++ I I '
^ Tj< C-1 — 1 !
TtlOSTtll^COlOlOOS
■^lOIMOCOCC— 1^
fOOiOOOOX— I
^-ooox
rt CO ^ t^ :o (N -^
0-105X— Id T*<— iCOt^ •MOtJ<»OiOOOC^— ((MloOit--
O-fOSJOtO t^t^l^O OTfiOJlMOSt^— it^t^COiOCO^
(Xi O0Olb<i -^ lO t^OiOi 05rtM'>0i0C0l:^«SX-*l-^XO
r<i rvi rsT'^1 k^ --v* ^ti jtn -vi c<i ^ r<i -y-> »/*i r— — ^ ir^ —^ iT'
oTco'c^*" rt''c^'"x'''o'ccr— Tic — Tx"
CO — -^ — I — I lO CO
r co' C-i CO CJ CD CO 03 CO iM I IM — I — I
' + 1 ST +++7 I + ' I ++
O iC "O IC X -H — <
-! t^ tT _L. O co' 35
1+7^7++
Xt^COCD COC0COM< XCOOXCJ3»Ot^C^1— ITtiX-^iC
)05— It^CO >OOOt}< OTflC^IOSCOlO
jt^CO^CO COIMCDIO (MX
I (M CO CO >0 03 X t^ lO O Tfl
C^COt^— lO5C005l^(
lO xcooxcojPS'-^Sroo^'-"'*
1—1 TfiCOOrtlCTiC^IC^l— tOOJt^lOCO
—I — I— ,C0 -^ -<CO
O c3 <-<^
_'S tH -G 3
O O M 3
I'
C3 O
';: (=1
I bC ^
p^
,ic;
•■^ ^ .2 o S '^ .5 c -^ '^ i -^ .2
H^<!l
I O fcJJ D-
; o O
3 :=!
116
Table 2^.— Total Arrests by Race, 1965
[4,043 agencies; 1965 estimated population 125,139,000]
Offense charged
TOTAL.
Criminal homicide;
(a) Murder and nonuegligent
manslaughter _ .
(b) Manslaughter by negli-
gence
Forcible rape
Robbery
Aggravated assault
Burglary — breaking or entering..
Larceny— theft
Auto theft---
Subtotal for above offenses
Other assaults.
Arson
Forgery and counterfeiting
Fraud
Embezzlement
Stolen property; buying, receiving,
possessing
Vandalism
Weapons; carrying, possessing, etc-
Prostitution and commercialized
vice
Sex offenses (except forcible rape and
prostitution)
Narcotic drug laws
Gambling
Offenses against family and children
Driving under the influence -.
Liquor laws
Drunkenness
Disorderly conduct.-
Vagrancy
All other offenses (except traffic) —
Suspicion
Curfew and loitering law violations-
Runaways
Total arrests
Total
4. 743. 123
6,509
2,457
9,328
39, 854
70, 285
181,429
364, 072
767, 042
193, 475
5,516
27, 477
49, 537
6,781
15, 869
82, 798
49, 731
30, 635
53, 422
31,294
87, 627
59, 958
231, 899
167,815
516, 548
503, 849
115,305
611,121
76, 183
71, 138
88, 103
Race
White
,235.
2,675
1,883
4,485
16, 586
32, 539
118, 167
247, 606
64, 200
488, 141
116,734
4, 321
21, 690
40, 843
5,777
10, 120
65, 601
22, 695
12, 643
38,615
18, 530
19, 842
39, 449
188, 159
131, 452
1,070,861
312, 228
83, 495
365, 869
53.651
54, 288
70. 382
Negro
1, 347. 994
3,704
541
4,665
22, 546
36, 558
59, 673
109, 792
26, 372
263, 851
73, 284
1,127
5,440
8,253
966
5,463
16, 074
26, 226
17, 598
13, 759
12, 069
64, 135
19, 699
38, 966
31, 929
354, 158
179, 506
28, 161
135, 946
21,721
14, 521
15, 142
Indian
113.398
46
15
85
288
569
1,298
2. 583
927
5,811
267
28
241
192
22
331
209
142
237
80
28
474
3,433
3,065
81,987
6,095
2,617
4,782
605
586
1,078
Chi-
nese
1
2
6
16
61
222
33
37
29
178
10
41
29
144
53
30
151
13
52
62
Japa-
nese
All others
(includes
race un-
known)
,970
4
4
23
21
150
318
106
73
51
395
10
137
69
423
89
131
298
6
338
75
76
13
87
405
582
2,080
3,551
1,470
,264
2,064
38
80
213
13
174
729
557
212
701
535
3,049
316
1,163
1,271
8,975
5,878
871
4,075
187
1,353
1,364
117
Table 25. — Total Arrests by Race, 1965 — Continued
Arrests under 18
Offense charged
Total
Race
White
Negro
Indian
Chi.
nese
Japa-
nese
All others
(includes
race un-
known)
TOTAL
1, 019, 301
733, 585
263, 690
7,585
440
1,059
12, 942
Criminal homicide:
(«) Murder and nonnegligent
504
165
1,940
11, 440
10, 594
94, 699
201, 242
59, 298
190
121
658
3,281
4,638
62, 665
137, 446
41, 875
296
42
1,229
7,977
5,760
29, 892
60, 131
15, 791
3
1
1
1
2
3
99
196
81
14
(6) Manslaughter by negligence.
Fccible rape
1
14
25
70
546
1,004
396
1
2
2
44
119
27
37
Robbery - -- . __
153
Aggravated assault
121
Burglary — breaking or entering
Larceny — theft
1,453
2,346
Autotheft - - - - -
1,128
Subtotal for above offenses
379, 882
250, 874
121, 118
2,058
195
384
5,253
Other assaults
28, 946
3,680
2,714
1,710
241
6,238
64,015
10, 156
799
13, 079
4,021
2,194
607
1,886
46, 091
25, 583
88, 982
7,107
151,651
20. 478
71, 138
88, 103
16,118
3,005
2,154
1,252
192
4,004
52, 631
5,738
329
8,882
2,853
568
473
1,708
42, 691
21, 045
60, 643
5,069
113,691
14, 995
54, 288
70, 382
12, 218
626
515
423
45
2,087
10, 649
4,231
466
3,859
996
1,503
129
122
2,365
3,200
27, 063
1,699
35, 425
5,288
14, 521
15, 142
111
16
23
5
33
206
29
1
26
15
3
4
43
730
1,131
439
66
856
126
586
1,078
5
--
2
22
4
4
16
1
1
1
1
10
24
10
1
12
9
478
32
Forgery and counterfeiting
21
Fraud
29
2
Stolen property; buying, receiving,
102
Vandalism _
483
Weapons; carrying, possessing, etc-
Prostitution and commercialized
vice
141
2
Sex offenses (except forcible rape
296
Narcotic drug laws
146
111
Offenses against family and children.
1
2
6
1
19
4
52
2
52
62
16'
4
13
44
90
2
338
75
11
Liquor laws ....
283
Drunkenness
202
Disorderly conduct .
805
Vagrancy
225
All other offenses (except traffic)
1,537
65
Curfew and loitering law violations.
1,353
1,364
118
Table 25. — Total Arrests by Race, 7965— Continued
Arrests 18 and over
Offense charged
Total
Race
White
Negro
Indian
Chi-
nese
Japa-
nese
All others
(includes
race un-
known)
TOTAL.
3. 723, 822
2, 501. 801
1, 084, 304
105. 813
853
1,911
29, 140
Criminal homicide:
(a) Murder and nonnegligent
6,005
2,292
7,388
28,414
59, 691
86, 730
162, 830
33, 810
2,485
1,762
3,827
13, 305
27, 901
55, 502
110, 160
22, 325
3.408
499
3,436
14, 569
30, 798
29, 781
49, 661
10, 581
43
15
71
263
499
752
1.579
531
3
1
1
4
14
17
103
6
4
3
3
21
18
51
122
25
62
(6) Manslaughter by negligence.
Forcible rape
Robbery --
12
50
252
Aggravated assault
461
Burglary— breaking or entering
Larceny — theft
627
1,205
Autotheft -
342
Subtotal for above offenses
387, 160
237, 267
loo, 616
! 1,316
19, 536
39, 591
1 5, 585
6,116
12,970
16, 957
12,314
29, 733
15, 677
19, 274
38, 976
186, 451
88, 761
1,049,816
251, 585
78, 426
252, 178
38, 656
142, 733
3,753
149
247
3,011
Other assaults
164, 529
1,836
24, 763
47, 827
6.540
9,631
18, 783
39, 575
29, 836
40, 343
27, 273
85, 433
59,351
230, 013
121, 724
1, 490, 965
414, 867
108, 198
359, 470
65, 705
61,066
501
4,925
7,830
921
3,376
5,425
21,995
17, 132
9.900
11,073
62, 632
19, 570
38, 844
29, 564
350, 958
152, 443
26, 462
100, 521
16, 433
1,156
12
218
187
22
55
125
180
141
211
65
25
470
3,390
2, 335
80. 856
5.656
2,551
3.926
479
29
1
10
13
1
4
5
9
11
33
- 25
178
10
39
23
143
34
26
99
11
76
---
22
8
12
18
28
61
44
386
10
137
53
419
76
87
208
4
1, 586
0
Forgery and counterfeiting
59
Fraud - -._
184
Embezzlement
11
Stolen property; buying, receiving,
possessing
72
Vandalism
246
Weapons; carrying, possessing, etc__.
Prostitution and commercialized vice-
Sex offenses (except forcible rape
and prostitution)
416
210
405
389
2.938
Offenses against family and children _
Driving under the influence
Liquor laws - -- -
315
1,152
988
Drunkenness
8,773
Disorderly conduct . .- - -
5.073
646
All other offenses (except traffic)
2.538
122
1
119
P. C
Tti t^ (M 00 CD M >0 CO
I _1_-^ CO .— I >— I
(N lO C^l !M OC CO CO C^l
»0 r-T CC t^ I-^ !>f t--^ O'
C~l lO t^ CO CO
05Tti'<j<cccocoaoo
I
-M WC ■>*< -^ CO r^ Ol
t^ C^l !M IC CO »0 I -^
++7+++' i
iOrtXCCCOCOCOCO
-Tcvf^'cnt-^co'"
OO COCO c
i-Tofoio I
^ ^ t^ t^ »o
o t^ X' t^ c<i ^ a: ^ i
■CCOO»OCOi-iTtiOTtiO
) i' ui rt' oi (>i CO »c ^ to
I++I+7+7
I CO X Tf< CO r-< ■
ico>oaccOT}<io-<*<>cco
_ _13C(MCOC0051^C»(MCO
H^t^lCt^COt^OlCCCOCOO
t^ lo cc r^ c^i CO
Oa>-HOCO'>*'35COCO-HCOCOCOt^-*t^>OCC
CO >-^ CO .-H CO CO CO CO O CO 00 03 ^ o
^ r-- r- CO
XC000300t^O>0'
CO CO CO CO o •
00 00' -a^ 00' o tr^ CO
T-^ CO CO rt (M
'CCCOCOCftr- t^XCSiO^OCiCOSTtii-iiOMt^'
rti CO CO O 05 >
1 +
I ++
CO — CO I —I— —
+ 1
•* »0 .— I X >0 lO CO I
■ ■^ 'M CO CO C2 ■
1 — lox'or^co-'tiTtHiocoicasx — coco
»0 Tf C5 — ■>*< C<l — lO .
X CO •* "O iM X
O lO X 05 — OQ .
T)<c^t--»o-^xo3ait^Tt<coo»ococo
C0t^-*Xi-lC0C0OiOC5Tj<i0>0-«*<X<
C-H03 !MCO(M — -H02C0t^»0C0r-lO
Tt<i-HTt<C^X-^t^CO
17
t^ CD C^ 0-1 •>*i •<f
+ I ++++
X 05 X (M
>co —
•O CO
lo" — ' x" oT oT — " >o co"
I l^ (M (M O X ■>*< :o t^
CO X CO (M CO CO >0 CO
I COt^OSOOrfiC^liC
COCOrtCOC^t^— t^C-lCOCOt^OiiCOSOSCOCOXO-lt^-^ti
I W C-J — X _l_cO t^ ■^ X — I >Crt 0> — CO T}<l— ,-H CO
MH Tt — T}< — O 05 -^ CO — 05 CO X C~. C5 C^l
X t^ ■<*< X ■<*< "O X ■* lO C^4 03 iC CO O 05 C^l
■<ti CO c-i ri ic 0-. — X c) CO — CO -^ "M CO CO
CO-^-^OCOXCOCOXOOcOCOCD
;xc^co40oc<icoc^i — 1
>oco — COiCO-^t^ — o
>-*XiMCOlC.— lOt^COCO
o ii fi a
■MM
© >>c3 ^
o > Es
b£.2 c3
cc z: P
bc§ aM
Sn c33bc
2
O I
c3 <»
1^.
G a • O t ^ t- ■ Ar'2 5£ S "
0'«
120
VO
S
Ov
o
""-1
^
a
;j
^
3
^
a
«D
-o
03
^
■^
^
^
>.
!^
V
f^-
1
lij
r^
IN
01
V
>
^
Si
lO (N lO r-l (M ^H CO
(M (M «5 03 ro
(M (N t^'-i'*
I O O OiM
co" cc — <' ad t^
OOOC^OSO'XOOGO
(M lO t^ 1^ '^ O «C
-H lO CO OO O lO CO
OO-H;D(MOt^C»(NcC!C0t-'0TjHt^OC<lt^
,4" .-4' ^'' (M* ^ — '■" of -H -- co' co" t-* of ■*' iffi cc
(NCOOCCOIMlMOO'Cl^t-'-'iCCCOQCCCC^-H^
lOr-HiOg3Oap5Tft--tCCO^00G0OiggCOg;!CC
— (-4O00— 't^t^— '"^XtMCC'
I (M 3C t- -H ^ 0C> '^
i^05coo5c<iocccc
(M(M — (M C^ ■
•O X 35 (M iC X
C^CCt^i005t^(NX
— I ^ C<l
o ir: — i^ 1^ GC -^ OS -rf C 05 CO. •
. - - . „ ^ ., GC' I- O I- lO .X O CM r- ^ -*
Or^-<*<rt<^03CiC'(MO0C'CMO(M-*C-'t
— OC O CM CO •
— —1 CM
Ot^r-<^eMt^CM(M05-*50<N<
o?Jr-co-'oOT}'Xt-coffi— rfoo-. t-oc. — oi-Htc^
«5 -To' CM cm'—* Sf ^'2'~''cm ^'cf^'
00 r^ -* CO i-^ lO 00 CM I
-H-^tiOitO^OCOOSOi
•X — I -^ 1-1 CO CO 05 00
CO CO «3 00 CO r-l
0505C<l»CO'-H— OOOOI^COOOOiOOOO-.CCCOCCOC — --
lOoocoi^cocO'OO — oocoo5050oO':;o-. i>2!S^Pi^
05 05 C<1 » CO
to 00 CO 1^ "
O CM T^ CM
< 00 t^ •<# lo T^ o
00 CO lO OC' ■* CM
CO 03 CO t^ CO
CMOO-.OOOCOCOO
OX0003-H00OCM
OCCCD30t^»OiOTtl
(M -t< lO iC CO lO 05 t-
OCMlOI^C^'OCM— '
— Tf ^O O 02-^
—(CO CM t^ CO
00OiO5CCT-<'-^tC-*CMtC I
O5»ccMCMa500O2cocM-3;i
" O OO 00 C' CO' 00 '
O»O-^O0000t^^CM*^'<^t^0i
000)-H t-CMCS — O-- 00 —
'XcC>r-<T-i cct^^^ OCM
-ooo; cct^r^-^'OTf
05 CM O ■* ic t^ ri- •<f
— I CM OC' CM -* CO GC' —
to' CM'---Ci"i»
JOt^i— ICOOcC'^HiOOCOO^CM
cj: !j — t2
CM iC CM >0
t^CO"^ CDCC^-^CMCM'
iCOiCOCOiOCC'Ot
^ CO C^ lO t^ t^ — ■
CO CM 'X CO' CO 03 •* CO' lO 00 CM 05 o: O CO <
co^»oco^r^t^'^^^xioiocMi * ■
CO CO '^ "O CM O I- CM C
■. X X' r^ CM 1-- CO Tt< cc X CM c; c
)CM — CMCOXXOCC'-HCffOCO
)0>C.— COCOCOCMOOX —
r,-* cM'"cM'"or>-rt--^cc'~cccM
^=
o
2^?^
o"
5l^
■*
•*
I IM CO CO O CO ■
I OJ CO '4< O >* i
I I-. iC3 CO t^ 00 (
03 — 1 'S* -n 1
£. a-
^3^
05 X3 OJ
o c ^
0<1(
I £ S 52 "-^
Eoga50
o
o c
03 (B
33 1^
5 x; S .S c -^ t: o:
' ^ - ^ =- § I &,
a
^^6
„55>H.5i&.'-Sr
«t: t-.i; i-—^ 03— 3
3 S
121
221-746°— 66— —9
t^G0lO(MO3005O
O-l Tfi (N IC 00 00 -^ Tf<
lO 00 -x> O « iC -^ c
0^5^^JCO•-^>0-^-
-H 00 CM -^
(MTft^OTtit^OO
CDlO'^COCOOOCOfO
^ ^ lO >0 t^ -H
'^o^coo^ggc.
iOO-^>Orf00-<tiffl
rt »0 CO o ^
c-1 lo ^< ro --H o t^ lo
C<I t^iC M 1-1
l0^5^0l^^■«tloot^05
CDt^t^>OOrOO(N
CO 00 t^iC c^
■-S 03 -H t^ t^ M 1^ :
■* -^ OS CO 05 O lO c
^O 3 CMOS CO
■^r-.iMooo-HCO'*
C5l CO «>OOOiOCO
T-H C^ CO >0 -H
— II co^ -,c Ol
I t^ Oi --C ^^ lO C<t O-l i
O !M 00 -^ >— 1 CD t^ I
T)< CO ^ q? 00 CO -"If
01CO'Ot^cO->*<0(MO>OOC-1i005'
t^ 0-1 -H iC ^ 00 CO t^
« r-H CO
I -^ CD I:^ >0 lO 1
lOSOO-^CliOCOOCOCO
> lO >— I Tj< CD CO ■•
1 IM •* lO ■» 00 C^ '
r- C3 00 coos (N
— : 0-1 lO CD CD 00
I f^^iccor^"0-HcoioococOT-<t^<Mocoinooo
- — ■■ ■■ ■ iCOOSiO S5QCCOCO o
t^ I TtH t^ t-
- _ - . F^ 05 O :
•^COOICO'O-^CD'O-^-"
C5 CO CO -^ t^ ^ ac
:CO^0-1MC0-^O5Cr;'M
COCO-^XiCSJiXr-icO
it-'^XO-liClMCOCOCM
— < !M 35 CO -H ^
^— Tt^ ^ 00 •— ' w- J^
lO — I IC t^ lO o •*
3500COO>OiOCO(M02CC;
CO --< I
M 00 ■-
lO CD 1-1
co' — - co' of co" ■^'' oo' cd" of CD' r-T I
-1 01 r-H T*< ^ (
oi rH -^ o r^ 35 ic oi r^ -^ 03 •^ •— :
CO 35 01 iC t^ 05
• t-^^— OHOOCOOIiOOAcDCO^O
ICDOiXCO5iO3CCOX33cD00-<J"33
irH-^co'om'ticDioioiocoo'
lOOIOCOiO^COOl
CO 35 33 X ^ t- 01 Tji
!M ,^ ^ t- 01 CO ^
0-f of lo r^ of
■^CD^OCOTf^TfilO
CO O -^ X 01 01 -"f -^
0^-HiCC0Xt^O1CD
of of lox'of
iC -^ X -^i O — 35 -^ C CO 01 CO X CD t^ 33 CO 01 r- 33
XC0iCt^O1iOC0XCOrf<r--J«C0O1cOt--X0JXCD
— H 01 X CD 33 t^ 01 CO X O S O t- 01 c::: IC X t^ 35 OJ
I 01 CD CD -^ X "* I
CD -^ CD 33 CO 1
^ O) --^ lO
XCD.-IS5r^CDTf<iO— <OCDTti^350t^CDXiOt^
05CDCt^COCD030COCOCOcOX-^0)-^0'000
lO Oi0 01-*CDt^01t^Ot^r^C0X->*<OCD-5fC0
1 05 05 T-^ >0 .-< ■
TtHOl-^TtiOCOOIOICOCO'OcO-HCOO^O-'tiXOO
331O-HIOC0 01— <'<tiTf35Xi033i033iOt^t^O)0
CD OiOOliOXXTfCDCO'Ct^-^CO^-^COIt^
^ CD 01 CD 33 35 .
^CO'-HOIOI'-OOOICOOJCO'OCO
COXCO-^iOt^350CD0135-^CO^O
OICC — COO-^XCOS X-HCOCOt^^
O OJCOOICD'-'— ^TfSscD-^iOCOI:^
t-T ,-T T-^ r^ of of r^ of of r-^ "0 CO'
•^ O^ X X
rf r- -^ CO r^
CD Ol O lO rf
-dT— <■"■*' -^'co'"
OJ 05 -^
c3 i- ;
; « > c3 ci^s
§a
•S3 «
CO P tj
.s-^
- Q..22 2 3 ^ " - ■-/■■ -r-^
» o m:3^ «^ ^m o ^ - - > z:
- > <i M U tf
1-22
>d CO CO 05 ^' oi <xj 00
(MOOiOCOC^iOC^C^
00O0lOTtHC^(N->:J<<Cl
t^COCOCOiQiOOO
t^ Oi O O ■* CD 00 1
>0 '33 O 00 00 05
C^I^I^t-HCCiMt— !0lC03C0l^r-<C0'— -^Oir-^ICIOOO
04 03 Co' 00 OJ "O 03 o t^ oi oi lO" I
O (M CC « 03 CC Tf O CO CC' t^ ■
1^ •^' -^ ^ (m' rt" t)<' lO I
C^I~CM— '"-^lOOOCO'
(M00t^(M00OC005lOlO00C0C000O?0OlOTfl-*OO
to t-^ O ■*' T*<' t-^ r^ O (N ■^" -^ Ci ^' ■ t^ --<■ CD CO O CD o c5
rtCO" COt^(M C<l-H o) — COiMCO
cDiOTj<(NO>rt<Ot^iMTt<-<*if:. CO C»'^>Oi-iO300t^<N
CO CO CS — ^ ■ CC' ^" CD ■ 03 (N ■ ■ — ■ ■ IC -h" im" GC ■*■ CO
?CMMX'MO>CCOiMC^oC'0^t^COCOt~0-. '
;t^(MCI3iO^t^OO00-*0iO'^-*it^l^(M'
hiCt^oOt^cDcOcC'— OOOOOiCDOr-^t^O:'
- O C' — O 0C> ■
O CO CO CO iC ■* 1
• lMCDCOTf.-HlM0000t^-
)'-^03cc-h^.^coo;t
lt^CC«OiC-rfO:CD(Mi
' 05 CC Tf-* CD' Tf (N 0-- ■
^ CO ^ 03 03 O '
OOiOt^uoOOINCD-^OCO
f:S
(M ^ (M t^ ■
(M 05 CO CD' I
C^(NCOCDcD00t^iC
Tf-^-*C00505COt^
iO-^03(M00CDOCD
CO IM OC' CO CD O; tT CD iC OC (M CTi O O CO CC (M CO' Tf t-- 03 —
cocoiccDiot^r^T-Hi-iocioiC'tN^cD't^f-iioc^coca-H
COCO-*'0(NOI^(MaC'ir:-H'^iC'CD'05(MCDC^(M<Ma5'*
r-t CO ^ ■* --I CO
(N iC (N --^ 00 CO ■
-H O O 33 .
ic' ■;*<' co' -*' 1
CD' CO CO <M O O X ^
(N (M' 33* '-h' I~~' co' cd' cf
rtOOCO— ICDCMOO
CO (N 00 05
I »- <» CO 00
-H CO
eo-^>o'i<^eooiOi'*'o<Mo<Meoco»^'OcoocD(M.
>n010-HeO'<^CvlOOOO'*>OCD(3iCO»a<OCO'^'*0305''
I (M ^ CO t- •^
an
'u O O M 3 g3 D
O ftH tf <^ pq hJ <^
03 ^
B^:
® TS «^
si
a -5
-■03 i»
<1 Ph Ph W cc > ^ Ph
;©
m Iz; O O P >-5 Q Q > <5 m
123
a
u
"G
CD
T-
Q
-
•-*5
o
i
V.
^
o
^
>1
C^l
o
O
o
1
0^
"S
(N
V
«
-a
cc
irf<0— ' lOt^
/>) o « o «; -M
■ -H .-^ -q^' CC CM
i « -O 5C o
' -^' CO t^ '^i
X CS CI
:o CO rf'
05 CO O t- ;C CM X X
— ■ ci O ^' ^'i --£ :£ ic
M 00 O 05 X 05 t- OS
'X-^CMCOOStOt— iO^HtD00"0C^lCOOC<5-
' — " ' ' ' ■ Tl<' — ■ -h" — <■ ■ oi CO* O (M* c<i <m' .
-H Tt< X IM (N ■
I <M iC' — I iC t^
cocccocncocs — -^
O =C --C X O O O CO
OiCOJXC^lXt^CC
1 >-- C-) <M X ■--: o> '
' ■^' CO' C-i -h' CS 35 .
O Tl 'M ■>! iC CO CO X -^
— ■ X C5 — ■ t^" x' CC
X o t- — I
t^' ic CO t^ ^ tc oi I
■M Ci "C -^ X 0>
OXXX>Ot-t^C^TtiT3<-^C)OrC05M-HTj<C»XiC(
35 — ■ o x' ci — ■ co' CO o^' -*" :£ 'ci s; co' t^' o-i t-' o ■*' x" — >' t
X Oi X t~ .X O 05 C5 CS X X C5 X C5 X c; X 'O X X X i
■^ O O t- iC f
— ' X •-;: CO CO CM :
05 O CM X X ^ :
iC i-O ;c CM CO O ■
sg:
X O ^ t^ CM ;C
C Cvl CO 35 I- 05
X 35 -"ti »0 Ol '
^o t-O cc t- ■
I —I CO (M >0 O
w—^ooojeooioooi
iO'^.-ICOa505Tt<'OCN!0(
lirsioeofM-HoiOi-^
> CO 05 CO '^^ O CO '
as
1^ n'
H -.
O -='
J M
: 3 > S st3 M
( o tJD3 S 3
So-
C3 O)
c g
<^ i-,
o 5
o<!1f:^&Hw5Q>^^M26'oQJfiP><c:^5rt
124
++
CO 00 iC Tt< 00
■ti Ol ^ CO CO
»o 05 a> >o 00
IC (M O C^ fO
CO t^ c^ c^' o-i 00 _l1 CO o to ■<* c-i oj ic CO ■m' b-: o i' lo —S ( '
> "J CD ^j r^ c:^ I
• -^ _1_ ^ _L IM I
C0005000 OiOwCO 00»CiCCC'C0t^i0O01^H00*— *fM
S'^Llffi''' lOCOOlCR COiOt^iOCOt^OOt^Ol^i-lOOCvl
■<rt<-HTt<'N CO CO CO >C ^iC — iC--HT!tia>COt^rti —
OO-^CDCOOC ■MCOOTf CO-<*<CO-^t^'<tlfOCO^iO'^»OCO
O 00 CO 05 ^ OS ■<*' CO OS C35 r-H t^ CO lO rt Tt< rt lO O i-H O IC
00 rt •*! CO COCOCOCO CO Tfi — CO C35 t^ t^ lO 00 CO c^
— (M r-l(
00 iC'
CO o
+T
OC0O-^(M
C^J^COOOOOOCOt^-^^O^OO
>0 t^' ■«*<■ lO ■ CO CO 4I 0> (N 02 ^' O
I I 1 + 1^1+^1 +
CO ^ 01 05 CO
T*< CO rH ■* 00
- ^ O CO iC 00 1^ <M 00 t^ t^ 00 C» -H <
OCOCO »0»000500-*(Nt^COCOOOOO(
■O^C '^iiOCOO-^OOlI^Ot^cO-*.
C^ O lO CO CO
■ "O 00 M* (M CO •
O 05
o ^
O »0 Tf CO !
c^Tos'io'co'"!
■* 01 Ttl O 1^
en t^ c-j CO CO
C^ CO C^ (M -H
00' -^'t^'--' ^'tJh'c^'cO*
I 00 X "C
) CO CO CO
I -H 00 M
t^^COCO>CT*<COCOCO-*CMCO(M
■C' X ic >C' CO -^ ^ oi
t^ rt' c4 to "O 10 CO -^
++r +++ 1 I
Tf CO X O CO o >o Tt<
lO^coxxxr^cD
■^i-icOrtiCOCOiOtM
^ — ' 05 rM CO CO
OS ^ i-< CO 05 -H CM ■
— <Xt^-^C0C0X-*O5>O»OC00>
Oi O lO CM CO C^i t-J I-^ CD 1' t--^ im' «o
I T I 7+77+ I ' I ++
C^IXXC^CM — iiCCMCM COCMO-lCOTfOl-HOO'
co' c^' --r .-T ic^o:' ac-^oi — ^'o'oj'i^'cd'x'co'o"'
(M rt 01 CO CO
^llOrfXC^llOrti-^CO
o ■* I - ■■ ■- -
t CO tC '
rt^'t^'c-j'c
C^ iC •>* C^ X c
Tt< CO (N >— I CO CO -H CO CO CO CO CO O t^ X X iC X CO >0 CO o:
CO CM C^ t^ T-H CO t^ O
+' 'T +++T
I I ^
rHOCMXCM I^iCCOX ■^XlOi— lTt<T!t<cOC-10500X<
r^COCOt^lO' r-lCM-*0 cox-" — ■-
■O-HCOr^CM XrtiOCM X03(
> COOCOCMCO-
OiOt^TtHCOr^tOC^ITtiiCTtHO-*
•>*<C0O5C0t-^r-HC0C-lX'*''OiOC0
O C-1 C-1 CO O 1
CO 03 CO t^ C"l 1:
CO "0 05 05 lO c
T-H CO r~ CO 1-1
CD X O 03
CD CO lO CO
^OlOCOXTfiTjH^CO
CO1— ir^Tjir~r-iTj<xt~
■<*<xo3a2Tt<co-^r^CM
CO O lO t^ '
— ■ O 10 (_
I rt C^ CO
3^ St:
w !=l C
^ ^ c
|§all||l|i^|pill|1|fa|l
125
Table 31.— City Arrests by Race, 1965
[3,069 cities over 2,500; 1965 estimated population 92,880,0001
Offense charged
Total arrests
Total
TOTAL |4, 234. 008
Criminal homicide:
(a) Murder and nonnegligent
manslaughter
(6) Manslaughter by negligence.
Forcible rape
Robbery.-
Aggravated assault
Burglary— breaking or entering
Larceny — theft.—
Auto theft...
Subtotal for above offenses.
Other assaults
Arson
Forgery and counterfeiting
Fraud
Embezzlement
Stolen property; buying, receiving,
l)ossessing
Vandalism
Weapons; carrying, possessing, etc
Prostitution and commercialized
vice
Sex offenses (except forcible rape
and prostitution)
Narcotic drug laws
Gambling
Offenses against family, and children.
Driving under the influence
Liquor laws
Drunkenness
Disorderly conduct
Vagrancy
All other offenses (except traffic)
Suspicion
Curfew and loitering law violations..
Runaways
5.425
1,770
7,567
36, 545
60, 418
151,825
323, 764
82, 125
167, 849
4,494
20, 941
34, 991
4,589
13, 743
72, 540
45. 744
29, 748
47, 368
29, 322
83, 674
40, 594
194. 077
142, 052
1. 422, 446
466, 471
107.415
427, 020
68, 799
67, 134
73, 558
Race
White
2.815,121
L978
1,340
3,247
14, 247
25, 996
93, 098
214, 633
54, 805
409, 344
96, 420
3,389
15, 992
27, 463
3.848
8,364
56, 185
19, 961
11,968
33, 461
16, 869
17, 855
23. 871
155,510
109. Ill
997. 083
282, 166
76, 976
294, 106
47, 528
50, 573
57. 078
Negro
1,278.817
3, 349
411
4,198
21, 647
33, 520
55, 875
103, 298
25. 187
247, 485
68, 484
1,053
4,767
7,215
717
5,151
15,446
25, 028
17,400
12, 974
11,816
62,196
16, 225
35, 309
29, 466
342, 475
173,815
26, 977
125, 597
20, 567
14. 403
14, 251
Indian
97, 422
27
35
237
357
788
2,051
581
4,083
927
12
101
101
11
58
222
194
137
176
70
25
228
2,102
2,308
74, 213
4,767
2,476
3,394
518
482
817
Chi-
nese
1.230
215
31
329
36
24
176
3
41
29
135
51
30
142
11
52
58
Japa-
nese
All others
(includes
race un-
known)
822
4
1
2
20
21
135
296
105
584
392
9
130
67
411
86
128
264
5
331
74
38. 596
10
83
389
511
1,870
3,271
1.416
7.614
1,904
38
57
181
10
147
630
522
204
648
494
3,030
258
985
1.071
8.129
5.586
828
3.517
170
1.293
1.280
126
Table 31. — City Arrests by Race, 1965 — Continued
Offense charged
TOTAL
Criminal homicide:
(a) Murder and nonnegligent
manslaughter
(6) Manslaughter by negligence
Forcible rape
Robbery
Aggravated assault
Burglary— breaking or entering
Larceny— theft
Auto theft
Subtotal for above offenses
Other assaults
Arson
Forgery and counterfeiting
Fraud
E mbezzlement
Stolen property; buying, receiving,
possessing- -
Vandalism
Weapons; carrying, possessing, etc...
Prostitution and commercialized
vice
Sex offenses (except forcible rape and
prostitution)
Narcotic drug laws
Gambling
Offenses against family and children.
Driving under the influence
Liquor laws
Drunkenness
D isorderly conduct
Vagrancy
All other offenses (except traffic)
Suspicion
Curfew and loitering law violations..
Runaways
Total
906, 086
426
135
1,684
10, 920
9,720
79, 939
183,819
53, 429
,072
26, 446
3,111
2,266
1,487
6,716
56, 474
9,481
786
11,755
3,869
2,107
504
1,676
38, 622
23, 013
80, 724
6,473
131, 582
18, 103
67, 134
73, 558
Arrests under li
White
633, 018
135
100
503
2,928
4,092
49, 964
122, 854
36, 632
217, 208
14,027
2,465
1,768
1,038
179
3,587
45, 630
5,197
316
7,729
2,707
521
390
1,429
35, 650
18,898
53,411
4,558
95, 757
12,902
50, 573
57, 078
Race
Negro Indian | Chi-
I nese
252. 967
276
33
1,139
7,816
5,462
28, 185
57, 625
15,327
115,863
11,843
607
462
419
45
1,998
10, 269
4,104
465
3,716
996
1,463
111
113
2,254
3,082
26, 186
1,599
33, 691
5,017
14,403
14,251
5,625
4
25
43
343
854
1,536
23
135
26
19
13
3
3
22
459
846
320
60
617
121
482
817
195
Japa-
nese
All others
(includes
race un-
known)
12, 057
2
3
87
176
81
350
15
4
13
43
80
1
331
74
14
1
37
147
118
1,316
2,191
1,096
4, 920
461
32
16
27
2
400
137
275
143
111
10
238
182
776
209
1,385
62
1,293
1.280
127
Table 31. — City Arrests by Race, 1965 — Continued
Offense charged
TOTAL
Criminal homicide:
(a) Murder and nonnegligent
manslaughter
(6) Manslaughter by negligence.
Forcible rape
Robbery
Aggravated assault
Burglary— breaking or entering
Larceny— theft
Auto theft .
Subtotal for above offenses -
Other assaults
Arson
Forgery and counterfeiting...
Fraud
E m bezzlement
Stolen property; buying, receiving,
possessing
Vandalism
Weapons; carrying, possessing, etc...
Prostitution and commercialized vice.
Sex offenses (except forcible rape
and prostitution) -
Narcotic drug laws
(Gambling
(offenses against family and children.
Drivmg under the influence
Liquor laws
Drunkenness
Disorderly conduct
Vagrancy
All other offenses (except traffic)
Suspicion
Curfew and loitering law violations. .
R unaways
Arrests 18 and over
Total
4.999
1.635
5,883
25,626
50. 698
71,886
139. 945
28. 696
329, 367
141, 403
1,383
18, 675
33. 504
4.361
8,027
16, 066
36, 263
28. 963
35, 613
25, 453
81, 567
40, 090
192. 501
103. 430
399. 433
385. 747
100. 942
295, 438
50, 696
Race
White
2, 182, 103
1,843
1,240
2.744
11,319
21. 904
43, 134
91, 779
18. 173
192, 136
82. 393
924
14, 224
26, 425
3,669
4,777
10, 555
14,764
11,652
25, 732
14, 162
17, 334
23. 481
154,081
73, 461
978, 185
228, 755
72,418
198, 349
34, 626
Negro
1, 025, 860
3.073
378
3,059
13, 831
28, 058
27, 690
45, 673
131,622
56, 641
446
4.305
6,796
672
3,153
5,177
20, 924
16, 935
9,258
10, 820
60, 733
16,114
35, 196
27, 212
339, 393
147, 629
25, 378
91, 906
15. 550
Indian
91, 797
26
31
212
314
445
1,197
315
2,547
832
6
82
99
11
35
87
168
157
57
22
225
2,080
1,849
3,367
4,447
2,416
2,777
397
Chi-
nese
797
134
32
20
176
23
134
33
26
90
11
Japa-
nese
All others
(includes
race un-
known)
2
18
18
48
120
24
234
68
12
13
27
61
43
383
9
130
52
407
73
85
184
50
9
46
242
393
554
1,080
320
2,694
1,443
6
41
154
8
51
230
385
202
373
351
2,919
258
975
833
7,947
4,810
619
2,132
108
123
OS s
fti
fc
'^
%
s
g
S
g
^
nO
?<
^
■f,
N
CO
^_
ii
.£
' —
as
h
lOCDlCi-Ic^TtirHll
O Tfi-HOO Oi lOO loo
I c^ lo ic o
o ^
^ c; c>? lo 3;
lo ■>*< o 1^ -H ro o
o
— (N 1^ C^f 10 "C"
cr »0 CO h- (^ W J- rt C-. -- -, _. ,.
t:: z; 23 P S^ '^ S =^ => '^ a. T^ o
-2CTJ-»-^0XTt<^50
1^^ _< CM(
CM CS O QC' aC'
05 t^OCMOOCr-ltCl-^
»-" o t^ ■>* t->^ oi c^ ■<* CO
'^W:
^ C5 Tf IM O
(NcoiM'^ccrocooo I Tj<
^ t-^ CM CM -^ 03 I 03
-h'cCio'oT i 00"
f^!'"£SEr'^'^'='^3CCOCM,^t^qC'^>CCC»C<»0501
SfcSSSj'^'^'^^l^'^'^'^'^'^'OOWCDOOt^.
OS C^l CR Tt< «S CO OC r^ t^ Tf 00 >C CV1 C^) ^ O O OJ iO 05
— CO -H Orf
00 c^i CO i^ 0-1 CT. c-1 CO o c-1 .-, 1* o 3; --- r:: 1^ (
10 06 00 00 Tj! tc' ci c^i C2 CO oi o »-i oc" CM 0-i >-; ■
i-HOOfC^llO ll^iC I O 00 TT I ^ ,-H CM
I++
coai-MiC(^cOrtOx>ct^oo-
00 --I rt Tf< 00 lO 05 »0 r^ Iffi O 10 ■ _ _ _
1 CM l^
10 .-H* cm'
1^ 00 rH ^ t
t^ rt t^ t^ c
O 10 OC. OC' ■^
CMCMO5lC^rf<SDC-I-5<00'03CMSrfiSott'
OCiiO OOOOCMCMOOOO-Jr^t-OuOO-
00'«*'000;CCMiO<N
10 OS UO »C CM 00' CO CM
+ I +++++ I
C» CO O 00 •»5< 00 <
»0 t^ Tf< CM I^ X- (
CC •<*< 00 05 -^ »C !
i ■>* -^ o lO o
'oo'oo'oo'o'io'
J^-^XOiCOl^lC — -"tiCOiCCCt^i— Oi
^++7+1
++
lO->tit-^CMTti>COOrtl^CC.-HCOCMOOQCCOOOOt^Ot^O
OCOTtHlOCCMQCOCCMCMOOiOt-r^OOOOOCOOCO-*
T-HCMTj<O;0C'#'C>C00Tt<COCM00'COSTt<-Ht^rtO:t>.O:
t- cr. o ic (^
I^CMOlC03t^f^t^lCOOCTtiO«:OCOOO'-lOOl^tC03
CC-*CMrf0r)OC0CM'<s<t^t^050CCMTj<0C00'-HOXl^»O
cooscooococcoor^t^ot^-^coococT^t^cc'^O'*
ll
5 a
;s^
, o
^ s
MO)"--
.So^S S > c3 s:n
t-i o O bJJ 3 rt S
o p^ rt << ffl H^ <^
ai ^ "
s «
C3 (B
(h fl QJ TS _ „ ,
Si.-^^
o C ^,
c3 C
seS'
-g •;:; ^ 03
129
■^ CO
•O CO CC <M OO
CO lO ■'ti d o
— 1 CO O OCO 03
— CO Tf aO0CTt<
c: 30 00 OS o -rf
M ^ ;£■ O O :c
liOO(MS<lQO'<*'aOO(M!M-.OOa50C300535tDu;i
ICOt>OS00CO'-l00CO5O«t^O5'CC<l30t^«-*^
■ I cq 35
■-I CO <M CO IM
CO 05 lO 35 «D -
— ic^iTjiiOco^aoio
:0 OC — < ?0 -^ 5D 35
— t^ 35 to GO —1 00
^^ ^ 35 1^ -:}<
co't^co
CO GO IM 35 :0 »C 35 C
35'a<COcOOtf>GO»00— <C0O3>XC^lt>.I^-^C0'0
«DCD-»ti— iCOOO-^-^COI^IMOCO — SsOC^llM-r-H
r^ cool (Mt^iO -^CO— 'COt^35iCt^00CC35
.005»OCOC005— io035Tt<CO(Nt^Ot^OOOOO
" i-l(N 5335l^a0O00>ClMC£;0000C0<M
")C<1 CO— 'C^ICSCO-^iCMGC
• C^'-iTt<:coit^35— it^t^aoioi
t^c^05cooao-*io-*ic^co-^t^co
■^ — CO ■>*i 01 -^ "O lO t^ O t^ «D OO
0-^t^t^iCCO:CXCOX->C:
Ol^t^iO 035— OC^-
t- lO -^ — IC 35 iC 30 ■
C^l CO -^ O 35 O t^ 1
(M (M (M — I — t^ GO
CO 35 uO Tf t^ 05
^
2
I.
^
'O
s
ns
0
G
-o
■-;3
;.
ni
s
m
^
5^
s
^
■/t"
1
ri
eo
«
fC
!^
0
jS
fl
— '
H
,' Ol CD t^ t- O
--^ O lO CO Ol t^
— ■" ^" — ■" o of a;
CD CO O O 3:
CO ^ 04 — C
of in ■ '
XXt^OI'S<35-HT)<o;CO^t^O-Ht^
— '3535iOO)GC010ICOtDiOt^Tj<Ot--
C;OX 35^'CXCDXCOXCDiCt^Tf
of of CO' ^' S CO* ^' '-'f tC of of 35" 35" Tf o"
Tfxcoo»35co350)'OOiooit^co'Oiox(^»co-,Dy;
CD UO X CO CO --D CD 'X Ol O) lO 35 O 1^ 35 CD 35 t^ -H — I 00 35
CO ^ '^ CO -H CO O X t^ ^ Ol -^ 35 -"f Tf 35 l^ --^ -^ CD
Ol >C 01 >C 35 .
CO 35 1^ ic :
t^^ 35 .
' ^ X s S
2 O «3 M
■0<=)0(M<Mt--^05
Pl^'4<'i<eO-^<MOO«>'«t^050COtD
•t-"*>*-HC0-HO.-lt^^^05000i
lOstMcooooeoeoco-HiorfiOr-Hco
• iO iO CO »o {
g >>
23 5=-
O C M 3 c3 3
-J >>
o >
CO o '
o c3
c3 «
M C3 3
.fi,it;cc>?'HHa:Z;
^1 ^ i
3: 3 3 3
130
in
fr
On
^
'"i
C
o
Q)
'50
«
^
3
^
o
-c
»5
<W
C3
t,
c
i.
^
CD
c
c
^
Kl
.Si
s
c
^
?;
s
C3
c/i
oc
1
IC
^
ec
■-^
M
v
A
a
H
^ lO r^ I C«5 <M <N I QO rt ^ -H I <N (M
C«5 (N CO O O CO
■<*<CC'-l!NCOt^t^»C
■^COt^05CO<M050
iOTf(N«iCC0050
ffl CO-* ^
COl^Oi-HCCOSOCi-i
O.^.D^ggOCO
CCO>-ITf<t^O00tC
^ (N r^ 05 t^ CO
cncoiocDOicioco
T-H CO ■* CO O CO
COCOCD':CCCOO.-HO
lOOS^CO^t^COi— I
^ (N I— CC <M t
g^ ^'
rt (M lO T-1 T-i r-H TP
I^ — ( t^ t^ CO 05
I 05 t^ r-l 00 ■* >-4
>OCRe^COCOMCO-«J<— iCCCOOOOSt^l^OiMClTH
(M 05 -- -H
COC»»COIM.-lt^»CO-*Ol^t^03eO'*0'C'<»'CO
CO <NOS05'0'>*lTj<(MCOeOh-COa30'OlMCCtD01
CO rH CO -H C^ ■<*< lO CO >C CD »C t^ O r-(
:'Ooc0Tt<»C'^'<*<ot^»coice0r^
-H IC CD CO
' Tf 00 00 CD •<*i
CO r-H
^ CO CO CO -^ '
CDC^CD-^OOt^COTTOOOOCD
t^ IM CO C' C33 OS O 00
COC000C^O5»CO3
M Tj* t^ (N iM
t^>O00Ot^r-lt^CD
■^COCTiOOOCOCDCO
M lO 05 CO CO
rH00Tt<COO5Tt<00iC
rf<-*O(M->*OC0t^
^ CO lO IM t^Tfi
i-H CO lO Tj< 05 lO
cDOcO•-^r-^lC t^COiOCDOOcD^CnoC'COC
c^ 0-f m" CO ic' x'
Tf CO t^ O 05 (M M <M C
IC000C^a5t^iO—^iOI^C0Tt*O(MC0
CO lo" (N t^' .4 o' ^
It^OOr-lOl'-^CMOOCDOC-^'OOOSI^OOCOOaO
CO C^Tfr-l .^IM (M^— HCDC0IMCC0(MO»0
rt" -4 co'im' co'
xoo^.-<oo^'*ic^io^a5^'*int^t-<M»oo^
i-H ■*iO0>OiC»C00'-<-*C^1CDCT!CD05C0-*C0C0
■* IM-* i—r-<(N COIM'-<CDCOCO'-ICDCOIM«C
—' ^ co*(n' co'
rf< lO C^ 00 O t^ CD ■
1-H C^I O lO 00 IM t^ <
"0 CO Tf rt ^ (
)r-<05'-HCDC0'O(M'J<O>C0-*'
iCO^r-^OOOlO-^CDt^OlM
I CO CO '-I 1^ ■* »0 CD' (M CO 03 CD
»CTi<as,-HO'-icoc<io3COi^oo>oeoooot:^coeo<M
■■ -- •■ ■ . 03 OJ M CO <M CO O O CO CVI
CI «>
bjo3
O H C D.
j: D c3 c3
o
C3-^
-2 1
.r? il t> s
-2^0 S > .s flZ3
O O Ml 1^ C3 3
PtH tf -< pq hJ <l
-j^ Em ft! (*; CO >
w s fc<
bc« ft .
H c3 a> t
03 53
■g-s
«2 "^
'S "O M ^' o
;e
fl 5 S -^ ;
S g > d S o f^ o ft<g c
0
131
I^ CO t^ CO »0 05 ic o I
' a> o
Tfi Tf >o 00 o -g; <
CO •<*i CO to -^ 00 I
O3t^00-^'O-*>OC0
j> c<i ai ic" oo' co' rt' -^'
T-H(NCOTt<(Nt-t-OC
I--.' lO T*-' ,
•oooo-^osr-c^'O
— <* ' --< lO co' lO O lO
CO — 00 <
CO CO — ' <
— < CO -^ lO O Tfi (
CO — . (M ^ OS IM (
-- t^ CO lO OC CO (
^
IN-^t^l^(MCO00t^00t^O5(N— CJSOt^OCCO — COOO
— < CO CO -Tt^' CO ^" "O -:;' CO (^ -^' oo' Ti; t^' t^ o o o — ' co o o
T)<00-*C^C^t^O>CO-^iOCO'-'IM^00O)"OTticCI
oc^oocoocnosoi
(Mt^iCC500CO(NOOCCiO-^OOCOOOOOiOCOt^XOO
■^' (N oo' oi --' CO cc' o: c^ o t-' co' — ' — ' co' ■*' CO oj ■^' cm' c o
— t^ CO 00 CM CO r- CO CM CO CO o o
; ■* 00 CD CO O 05 --H CO CO lO Tt< CM CM CO CO CM — -H CO •
; oo' ^' ' ' Tf<' •^' — ' ' rt" CO ' ' cm' ■ oo' — ' ^ t^ O i
C CO 1- 05 -H t- -X> 00'
i^C^OOCMUtt^CMO""
lOCO-^OOiOCMiCCO
_ _ - O t^ C3 CO -^ CO (>1 CM 03 :
CM'Ct--CMOC-lr035 — — -^COO^CCTOOCMC
- - 00 CO t- CO IC CM 00 TJH ,
,CMCOCM^CMCO-^t^OiCOTf<t^^OSt-lCO'*<c
iiocoCTii— 't^oo--'-^'*cot-io-Hior^>oa>-*iooCT>
I CO O — < 00 00 CM -H O c- •■ — — - —
CMO5t^O5>Oa0'OO3'
Oi ^ ■^ — ^ o CO
(CMOJCCOiCMiC'O'OO-lt^CO'CiOOOt^OOCOCOCC
CMiO^ O51O00 CM
•iccMco 'crsi-^Srcot^oS-^
:»^-oo- I
1 .-■ ■^ 05 <35 CM CO O C
I -H CO ^ -O .
I CD *0 t— Oi O CD CD
I tO ^O CO vO CO 1
3
c3 ^ .
^l I??
1^ C'C "^
u c C tac 3 c3 3
se-
tt
M
« > ce
M ^5 ce
MO'
ili
■5-0 0 5
9 c
S-^
■Sa:^a3«.H.S
. _^ - Je "S^ ° F PI
= cs P-r >.
P'> 2
;><;ccOPi
132
S 5
s g
</J CO
o
s
IM-i
IM(NTfO«D
cr.
co-^r-ft^rrcce^Tfioo-^trTj-O'C'-^'^^ooi-^rco
1
?j
c-: rtiTJ ,-, ,-, T-<f^'-^c^io.-it--4-^o
1
C
o
■ -^ ic' o: (N
-
^
P^
^-Hojt^wo— <>o
00
<»(>»»~'ne>STj<a)Os-Hc<»eDt,^eo<x>o<»n<CT>0'^o
i
!
o
■?J< ^ (M »-( OJ tt> ^ CO O —1 ■rj" <M c* eo
il
l^
1 x^
1
C: I- ■* I-C-.
CJ
--C — L- c; CM "C 0-. t£ c. -r ^ x --C ic -f O) — ( X t}> C; CO ir:
^ "^^ l; ?j 2" f- ^ ^ r- S :3 • ~ "^^ - S '^' d '^^ 2' ~- ^, 5
1^
«
CO
oo
(M CO O O CO O CC T-l
1
CO
■<J<C»iOOOOiOi-H-<iHi-i«5i»<Nr*<iot00005(NCOOt^iO
1
(-1
,2
B
s
1- 'ipgf!
2
i
s.
1 i
1
i
^- ^- ^- a ^- ci ^ ^. c^co^^ JO jH g' cf ^^^^^
^ g
05 t~- GO "-^ CO 05 ]
05(M'00i'n'^r~05i
1 <N! CO cc >o I
i^'^0505<Mcoooocoeoeo»^>0'r}"0^<
l^ ^ 1/^ -H (M CO C^ CO
*0 lO CO ^O CO 1
•^ 5'
< 2
o -S'
; IT
C3 ^
03
2
a
n
^ "^ IS
■a .2^
sag
■•■••-• wj ^ b/j c: 3 p
w o
0<&HfeWc^
:xZc52Z3;2i2>^.i
ocd
b/jjr
133
Table 36. — Suburban Arrests by Race, 1965
[1, 537 agencies; 1965 estimated population 33,699,000]
Offense charged
TOTAL
Criminal homicide:
(a) Murder and nonnegligent
manslaughter
(6) Manslaughter by negligence
Forcible rape
Robbery
Aggravated assault
Burglary— breaking or entering
Larceny — theft
Auto theft
Subtotal for above offenses
Other assaults
Arson
Forgery and counterfeiting
Fraud
Embezzlement
Stolen property; buying, receiving,
possessing
Vandalism
Weapons; carrying, possessing, etc_-
Prostitution and commercialized
vice
Sex offenses (except forcible rape and
prostitution)
Narcotic drug laws
Gambling
Offenses against family and children
Driving under the influence
Liquor laws
D runkenness
D isorderly conduct
Vagrancy
All other offenses (except traffic)
Suspicion
Curfew and loitering law violations^
Runaways
Total arrests
Total
762, 212
943
704
1,767
6,069
11,870
37, 799
77,470
18,668
154,290
37,714
1,584
5,679
11,421
2,134
3,172
22, 269
6,902
938
9,131
4,337
4,844
15.771
47, 964
34, 730
138, 220
80, 646
10, 508
113,927
15,591
17, 966
22, 474
White
664, 202
614
583
1,271
3,543
8,174
32, 040
65, 304
16, 093
127, 622
30. 479
1,472
5, 013
10, 494
1,902
2,594
20, 976
4,916
712
8,103
3, 793
2,386
12,618
43, 122
32, 257
117, 632
67, 766
8,711
100, 197
13, 290
17,348
20, 799
7,037
109
637
912
229
559
1, 228
1,934
216
984
487
2,429
3, 060
4,415
2,184
16. 891
12. 451
1,693
12, 913
2,228
543
1,414
105
1
16
2
50
265
165
.146
202
73
434
26
35
166
Race
Negro
100, 196
321
117
485
1.481
3,578
5, 515
11,719
2.427
25, 643
Indian
6.137
3
1
9
17
47
82
164
74
397
Chinese
138
53
Japa-
nese
178
All
others
(includes
race un-
known)
2
5
1
1
1
1
3
1
4
1
8
1
2,361
151
224
57
530
31
42
18
39
140
119
500
214
28
338
39
38
81
134
Table 36.— Suburban Arrests by Race, J965— Continued
Arrest
s under 18
Total
Race
Offense charged
White
Negro
Indian
Chinese
Japa-
nese
All
others
(includes
race un -
known)
TOTAL
241, 204
217,416
22, 523
508
43
49
665
Oriminal homicide:
(a) Murder and nonnegligent
73
37
247
1,091
1,639
21,202
45,270
11.963
56
27
157
672
1. 137
18. 205
39, 057
10, 590
16
10
90
413
481
2,817
5,991
1,303
1
(6) Manslaughter bv negligence-
Robbery
2
13
30
64
31
4
8
Burglary— breaking or entering
1
16
4
1
16
3
88
126
Auto theft
32
Subtotal for above offenses
81,522
69, 961
11,121
140
21
21
258
5,356
1,155
479
331
39
1,153
19, 195
2,049
25
2,752
754
185
207
466
12,873
5,464
21,291
973
39,385
5,111
17, 966
22, 474
4,498
1,106
418
313
36
945
18, 201
1,700
24
2, 485
721
135
185
452
12,551
5,194
18, 858
759
36, 206
4,521
17,348
20, 799
838
48
57
18
3
204
943
338
1
259
26
48
21
12
246
218
2, 379
211
3,002
573
543
1,414
9
11
A rson
1
Forgerv and counterfeiting
1
3
Embezzlement
Stolen property; buying, receiving,
4
2
1
4
3
39
Weapons; carrying, possessing, etc- .
Prostitution and commercialized
6
Sex offenses (except forcible rape
and prostitution)
2
37
34
17
52
35
166
2"
1
5
5
Offenses against family and children.
1
2
30
18
1
5"
2
1
9
2
2
1
1
5
34
Vagrancy
All other offenses (except traffic)
113
13
Curfew and loitering law violations. _
Runaways - -
38
81
135
Table 36. — Suburban Arrests by Race, 1965 — Continued
Offense charged
TOTAL.
Criminal homicide:
(a) Murder and nonnegligent
manslaughter
(6) Manslaughter by negligence.
Forcible rape
Robbery
Aggravated assault
Burglary— breaking or entering
Larceny — theft
Auto theft
Subtotal for above offenses.
Other assaults
Arson
Forgery and counterfeiting
Fraud
E mbezzlemen t
Stolen property: buying, receiving,
possessing
Vandalism
Weapons; carrying, possessing, etc...
Prostitution and commercialized vice.
Sex ofTenses (except forcible rape
and prostitution)
Narcotic drug laws
Gambling--.
OfTenses against family and children.
Driving under the influence
Liquor laws - ..-
Drunkenness
Disorderly conduct
Vagrancy
All other offenses (except traffic)
Suspicion
Curfew and loitering law violations. .
Runaways
Total
521, 003
870
667
1,520
3,978
10,231
16,597
32, 200
6,705
72, 768
32, 358
429
5,200
11,090
2,095
2,019
3.074
4,853
913
6,379
3,583
4,659
15, 564
47, 499
21,857
132, 756
59, 355
9,535
74, 542
10. 480
Arrests 18 and over
White
438. 786
558
556
1,114
2,871
7, 037
13, 775
26, 247
5, 503
57, 661
25, 981
366
4,595
10, 181
1,866
1,649
2,775
3,216
688
5,618
3, 072
2,251
12, 433
42, 670
19, 706
112, 438
48, 908
7,952
63, 991
Race
Negro
77. 673
305
107
395
1,068
3, 097
2,698
5,728
1,124
14. 522
6.199
61
580
894
226
355
285
1,596
215
725
461
2,381
3, 039
4. 403
1,938
16, 673
10, 072
1,482
9,911
1.655
Indian
3
1
9
15
34
52
•100
43
264
128
,112
185
72
382
25
Chinese
Japa-
nese
All
others
(includes
race un-
known)
1.696
2
2
12
8
26
7
26
37
18
39
140
83
482
180
28
225
26
136
I ^
1 Tt< !:D 05 lO CO 05
^ 1
2 2
+ 1
ooc^co
c» o -^
CO Ttl «c>
00 rfiO O CO
CO 1— I ^H CO <M
1^ Tt< CD ec c^
Oo'co'cftiM"
C5 QC OS C5 CO t
r(N* I
CO Tt< .-< ,-H 00 CT> ^ •
t^TflOJiOOCPOCDI^
Tf fO Ol T^ ,-( I I ^
+ i + I + ' ' I
1— I ^^ ■<:(< T}< C5 IM 00 05
COOIOIC^OOO^IO
r-i CO r^ o c^J
lo lo c^r
C0C0-^CCTti0)l0t^l0OC-)C0lCOc0O-HCC>003
-f+:
.++'
T— I C^l t^ CO o . ^
iM CO t^ ■* CO -H
^ Ol o
OCO t^_^ I S
co'io'lM* I Tf<*
•o CO CO CO 00 en t^ c
iOT00»OTt<00O>i— lt^i—(TtiiO_
iO»ocoeoi^ot^CMcocoot^050
ilMCOOOt^t^COCOr^'Cr^lM- -
(Mcotj*— iOr^t^ooc^i05t^O'Mt^cit^r-i03i— (
00Cp3;u0O5t^t;jC0'>*<(M'^C-ia>Tt<rf<Tf<Tf<COO3
CVI(MC0Tt<COC0O'>!tlC1CD>OrHitl0005^C0C0O
r-H —T r-T .-H CO*
o t-
c^ r o* M c-f oo" ^■~
t^ ,-1 ^ lO
T*; c^i 00 i-H
iCDCOCO'OCOTt<TtlCOOOQCt^OfOC^l'^(M
coocoeooioc-i-Hiio I rH»o--HCOt-.
rH I CO CO — 1 <M lOCO r <M I CO I _l
I I + 1 + I + +
1 + i + 1
OCOi— iiOC^C0iOO0JiO05M00Tt<iM05C0C<lO03i
0r;-^cot-rtT|H(M»O.-it-nocOT»ti:^t^cocot-00(^'
COCOTfCO<MOO-^COOOO'^r-iOCO(Mt^t^i-IC
CiO-^OOiCr-nOiMjH-HOOt^iMt^l^iO-^T-ioOi:
CO tH
IM t^ X ^ O CO IM 00
02 I I CV) lO iM CO O
^1+' 7+1 17
• CO CO •
C0*iM'"-*'''<i<'
OOcoiocoiocor^
CO C^J TJH ^ r-l IM »C C)
CO-*t^OiOt^OOO
• OiOCOI^TtiOOi005.-H(M(NCOT-l(M
I CTsCO-^C-lOOCOCOt^OOl^lMCOIlOi-l I
'+I
I M CO 00 O CO
TCOOC4Tf<cbO(CJia5'OC^)0005>OCM
>!M0>CCT-Hl0O00'-Ht-'OC0C00lTtl
ro-H —I ,-icc t
58
1 1
"bis
If
■•'O-e
S >-< ra
3,S &
I o
be
en 03 ^
O o bij 3 rt D
E&
OJ TS
III
he >^"
H 03 oj tie
S aj
x'5 bfl
o 3 e
ill
C-g O
O O bij 3 03 3
i O b£3-0 1J
CO O
b)o c: > 2 ►>,
" *- o 5 o ^ g
sg>39o^.oa'
P te 'C cr fc^ y-" ??— ' "^
fe .^ £ ^ S .. „ .„ „ „ ^ „ _
221-746''— 66-
-10
137
u^
o
^
£
i^-i
^,
»c
c;
or
sr
^
C
^
2
V.
5.
M
ec
Qi
—
k
5
^
c
"m
s
IC
1
2
1
©3
fC
c
V
^r,
o
.=3
nr
r-. CMOS (N (N
CTlOTt<05>OOil^03
1— iCOOSOCOCMTtitC
I— I (M cc >-o rc
1 1-1 (N 3-. ca <
cocMQCoo(Na;ic^
—1 rt O 02
00 Tf CC -H Tl- X C^
(M rt — r^ ic o oc t^
1— I r^ iC ~ CM X I
■ CM CMC^-^^
eC^'r-H CM*
CM'^-COCM-nrC-H
■ -h' -h' cm'
OCCMiCCMt^CCC'3CM,-l^COu':^OO^tCOt^lCCO
Cl0iOMt^(M>CCCCC^CC'<rCM-^lCr^3CO50CTf,-i
■^ CM r-l ^ lO ^ ^ CM CO CC CM IC rt X CM
Tf rt* T-' oJ
t^OCMCM-^OlCCT}-
■ttc: cm^^cmtts; rr
vf i
CO C — CM CM i^ r^
CC Tt C' CM O -^
iCXXt^CMCOCCMl
C u-; c: ic X 1^ iC ■<^-
I-- — CrC^CM-lCM
r- o c; I--: — X r-.
c: cr. CN cr. t^ t^ 1
CM CM cr. — X t-
CMO;co
X CM X ^ _ ^ :
t^t^lO-^lCCMi— ICO
'^^ XTt< XO!
o t^ CO ■ ■ ■■
CO »0 05 (
^' lO c
■ X ^ rt CM ^
;C t- -^ O UO CM CC t^ CO <
CM t^ t^ .-H ^ -.O t^ « -^ '
r^ CM CO T— CO O CM 1
TfcoiCSi-OCOi— iiCtr^C:
t^-^-^CSXCCClT-COX
CMXlOlOCMiOt^COCM
: CM O :0' O 3-. -- C
I -H CM r- tc ^' S
■-I :r •<»■ CM
!■- t^ CO CO C^l ~ ^ r-t
H -
OT}<t^OJeO«0^>OCDI~0'#'*e0^^05(MOOil
•«a< ■>;}< (35 CD O «D CO CO ■^ O t^ "-I eo OO -^ "O .
■O «C CO t^ ■ ~ ~
|-HCM«CT>Oiooco>OinooooeD>ocoeoi
cw^-a^i---
C3 ^
« > i
•r,-^ o c3
M
c3 o
■2 '^
>. . "^ — ;::: ~
2:- Ti c -o
tJ C ,r . "
X
'x>^;i;xZi"o;5;i5;5c5><^
c^ c3
■t: c
3 3
138
fM ^ ^ CO CO CD -H
CO ^ ■M t^ rH 1 t-l
■ C5-^00C005i-IU5,-H(MC0^.-HOC0t^'>1
> CO <» ^CO'-iOSCOOOCOCDO-)
r-H '-0 rt 03 -M ^ CO
IC0OC010C00510C00000C0'*-
O 00 !M t^
CDrtt^>OCOCOCO>0
-H ^ lO CO 00 Ttl
r- ^ CO 05 c-1
(M-^COCOOOOOiOiOiOt^OlCOCOT— it^CO-^'ifOO
00rHO.100Tt<C0<Ml^T-lr-((M'OC0Tt(iO00a0C0-Ht:^
■* rt CO .-I CO CO •>*" -^ 05 00 CO t^
lO rt
-Hi-H'MCDOC-ICOOO'-IOOOCOO-^^iO'MCO
COC^It^COOOlO-^lOi— l'<!*<CO'C005»0'>)t^COO'-l
t^ O-l CO ^H r-( CO CO < ■"
1 OS •O t^ O CO "^ r-H
. (35 t^ CO 05
I CO (M 00 .-1
icocDMTjtosc^ir^.— icoiooj
t^iocoooiot^coco
GOOO>0-*t^OOOO<-ICOCOO>00'MO-H»Oa5COC005
Ol^TtlOlOOt^OOOOCOlOOOOO^OCO'M'MiO-*
CO iOC-1^ ^ (N •>*-<*<.-it^ou0C0O.-i
l>'O0O0'*t^COt^(M
r^ CO t^ ^ C^l
Ost-cOTtic^iioc-it^-HCOiocO'^r^'-ioor^coiMO
rtcooot^tr^ooi'Oco'Oooicoasasc-iTtiooioi:^
•* O CO r-K .-H (M C-I ■-< CO lO CD CO 05 t^ (M ■>! 1-:<
05 CD 05 CO O) I
O'^-^'OCNCO^CO
CSCaiOOOCOOO^IM
I 00 03 ^ Tfi t^ Ol CD
COCOCD>OOOOOC005000300(MOOOOCOOO'
00 Ol t^ CO CO »0 03 03 "M O ■^ ■^ O t-^ -"Ji t-~ C
Tt<-HCO >— I -^lO-^COt
■ "M CO O lO I
00 C^l t^ 00 05 O I
^ C^I t^ CTi<M
^u:)Tt<(MOOt^-^COt^COOOiMiOCO.-lt^(MCliOTti
»O(M-^(MC0'OC0!M^T-lCDC0CnC0COiM»OC0>OC0
lo ojco rti-H T-H cor^t^'^o.-HOJ^
g M
I si
s|SS
'.a
o
CO c3
^1 1 ^
G -_-— ''S-^ (-, b£ § O
tH O O m3 c3 3
bC.2
'2"
3 g o § '1^ Ci
O O r^
It?
I a
.a^ ; c« o
CS'O M "2 O
g? b£-- § fe
:3 S o
_ Ol O 03
„ _ ^ 3 3
><ImOPh
139
3500iOQOt^(MfOO
MCOOOCCOOI^OC
r-^ ■>c c6 ci 1^ o ic —
: L': 'X c^' cc er-
ic u- (M C5 t: iC <N tC M CC
cc 04 QC >c ic' »c r-" r^ c^i ci t^ c
l^ a: 30 GC ■>*> cc c o
— ■ oc5 oi o cr: c^ o d
COOOfOTtt^rfHOOOOOOINCCOOOX't^CtNiCCCOO
cc cc t^ — — -^ tc — cc" t^ r-^ — ' ■ — o J^ CO r^ 00 r^ o c
N t^ CC CC O C^ t^
•^ o
C3 L- t^ cr. 1
?5 C^l ;£ CC :
T* QCC —
oc't— 'cc
• (M t^ >£; C) ■
ac t-- X ^ y. cC'
c"' ^ ac — r5 c^
5i — S rt re £ 55 ~. S CO X
r^L-cMXs-.oc — cicccofM
^J T^* o* o' c;" — * (m* — — -^
I ^ ^ CO (^ o
t^ — -^
^00 ic'cc
="-^"i
N r^ t^ — — i i~
t- c^ CO — CO c:
(M 00 i-O lO (N iC I^ CO IM
cr — CO w X
I^ t^ CO CO !M «C — ■
C<!
111
i
SHg
«>«>0r*<.<*i05rj<^
I CT> ca O 05 l^ 05
'■oi-oseococM—"®
.-a s
c3 a
a^
^L\
] z^ ^ C>-
■:z e o c; ^ c3 ^,
§5
C<;fc,fcKx>::=i
c tx
140
I CO -^ fO lO 03
I ' t-i c^ t^
CO ' CO lO ' ' i-H ' ' T-i
■OOOS-^C^iOi-hOSOSCOt^
i-j CO 05 O r^ ,-i t--^ ■ rH oi
■ rH to t^ CM
O <M lO t^ -^ "O 1— ( C
OCOO-^t^iOt^cOiM'
.-H 'T-Hcoododoicdi-Hi
0
Oh
" -H ed t^' c<i
lO CO
CO «5
I -^ C^l O "O t^
I •>*<■(» CO C» CO
lOt^OCDOOOiOCO
lO lO O CO ^ ■
-H uo 00 05 lO
Oi<Meoos'^»o^oo.-ioeoo3(MeoeD^i^(
Tti.-(TtiC0OTj<-^^OOC0OU0G00100(Ni0C0CM-^(M
CD lO lO CD C<i t^ -^ CO "i CO (N ifi ■
C005C0t^O<U5CDC0OOr-TtiiO(M^(M00lOt^C
cocoioe^oias^coiocsoioot^io-HioascocMococc)
-^co'Ococoot-^t-^tNco^iococooor- - ■■-■
— I !— I -^ 05 IM (
t^ Tjt^ ^ (N
) CM CO IM CO CM
CMt^T-(t^-*05^iOi-lc0t^00CC«0OC»G00>-*i-l
■'tlOOt^'OCOGOCMt^lOlOCTirtlCOCMOOOCDI^CMrt
^COOJCOOOi-HrtCOOOCOi-HCOCMOOCO^-^OO
iCOCOCOOOCOCMCMt-H'
CM C^ lO r-H Tfl
•^'*OiCDO«>eocOTt<Ot^.-ieoao-H^^
O Oi t~ Oi
(SieowdioocDio^aoooiBiocoeoo*
) ^H .-I CD Ol
(M05'<:l<u01^(35eOCD<M.
<u
tn O O bC 3 03 3
O &LH tf <i pq hJ <j-
-J >>
i&a
SI P,--H
on?;
s!^ 03 I' bo
=3 d ,^ 3
i-j y CO tH
_ O <D C i5 X-rS 'C o
03 tC
oo
S S S 2.2 t- S
141
Table 41. — Rural Arrests by Race, 1965
[835 agencies: 1965 estimated population 18, 5'J5, 000]
Total arrests
Total
Race
Offense charged
White
Negro
Indian
Clilnese
Japa-
nese
All
others
(includes
race un-
known)
TOTAL
249, 366
207, 193
24, 944
14, 708
31
98
2 392
Criminal homicide:
(a) Murder and nonnegligent
manslaughter
540
314
778
1,044
4,982
13, 408
16,733
4,546
358
253
593
775
3, 501
11,653
14, 214
! 3, 886
155
50
135
213
1.221
1,127
1,829
306
18
8
44
42
191
470
484
314
9
(b) Manslaughter by negligence-
Forcible rape
2
1
1
3
2
2
16
4
12
Aggravated assault
47
Burglary— breaking or entering
143
189
Auto theft
40
Subtotal for above offenses
42, 325
35, 233
5,036
1,571
*
37
444
Other assaults- . .. . - . . . ..
10, 084
398
3,374
8,473
930
974
4,173
1,624
133
2,297
407
1,245
8,990
22, 504
16, 837
54,983
15.943
3,567
40, 526
2,699
1,214
5, 166
1
7,750
367
1 3, 364
i 7, 805
854
838
3, 855
1, 165
89
2,025
356
869
7, 664
19. 552
14,858
41, 929
12,476
3, 125
34. 858
2. 326
1,046
4.789
1.909
15
.356
550
65
89
131
435
40
178
28
355
1,075
1,586
1,169
5,223
1,966
288
4,019
281
29
121
291
16
1.36
84
10
30
lot
10
3
56
6
3
220
1,249
684
7.184
1,262
127
1,255
77
96
234
2
7
125
Arson
Forgerv and counterfeiting _.,
1
2
1
1
16
31
Embezzlement
1
Stolen property; buying, receiving,
1
--
16
Vandalism
Weapons; carrving, possessing, etc.. .
14
Prostitution and commercialized
vice
1
Sex offenses (except forcible rape and
prostitution)
38
Narcotic drug laws
3
1
5
_-
2
.-
2
1
f
2
4
3
3
22
12
16
Offenses against family and children .
Driving under the influence
26
116
124
Drunkenness
638
Disorderlv conduct...
234
Vagrancy ..
24
All other offenses (except traffic)
368
15
Curfew and loitering law violations. .
Runawavs
.-
7
1
36
20
142
Table 41. — Rural Arrests by Race, 1965 — Continued
Arrests under 18
Total
Race
Offense charged
White
Negro
Indian
Chinese
Japa-
nese
All
others
(includes
race un-
known)
TOTAL
42, 316
37, 646
2,212
1,827
2
57
572
Criminal homicide:
(a) Murder and uonnegHgent
35
13
113
128
342
5,909
5,657
2,144
26
11
105
261
5,219
4,939
1.912
9
25
17
57
385
467
92
2
(6) Manslaughter by negligence
Forcible rape -
10
1
Robbery
6
x\ggravated assault
22
190
135
117
2
Burglary— breaking or entering
12
16
103
100
Auto theft
23
Subtotal for above offenses
14. 341
12, 550
1,052
476
29
234
Other assaults
610
150
321
108
9
250
2,729
193
3
381
29
38
57
233
4,929
1,524
2.167
256
6,863
745
1,214
5,166
513
139
273
102
9
218
2,532
175
3
321
24
27
55
209
4,607
1,202
1.870
224
6, 103
655
1,046
4,789
75
1
39
1
12
10
4
3
1
9
Arson
Fraud
2
Stolen property; buying, receiving,
possessing
17
57
16
10
70
1
5
6
64
Weapons; carrying, possessing, etc_—
Prostitution and commercialized
vice
1
Sex offenses (except forcible rape and.
32
7
2
21
1
2
11
1
2
46
38
169
9
414
82
29
121
Offenses against family and children.
1
21
251
274
114
6
231
5
96
234
1
1
24
10
1
10
13
Vagrancy
16
All other offenses (except traffic) _-_--
105
3
Curfew and loitering law violations-
Runaways - -
i
7
1
36
20
143
Table 41. — Rural Arrests by Race, 1965 — Continued
Offense charged
TOTAL.
Criminal homicide:
(a) Murder and nonneghgent
manslaughter
(6) Manslaughter by negligence.
Forcible rape
Robbery
Aggravated assault
Burglary— breaking or entering
Larceny— theft
Auto theft
Subtotal for above offenses.
Other assaults
Arson
Forgery and counterfeiting
Fraud
Embezzlement
Stolen property; buying, receiving,
possessing
Vandalism
Weapons; carrying, possessing, etc...
Prostitution and commercialized
vice
Sex offenses (except forcible rape and
prostitution)
Narcotic drug laws
G am bling
Offenses against family and children.
Driving under the influence
Liquor laws
Drunkenness
D isor derly conduct
Vagrancy
All other oflenses (except traffic)
Suspicion
Curfew and loitering law violations..
Runaways
Total
207, 050
505
301
665
916
4,620
7,499
11,076
2,402
27, 984
9,474
248
3.553
8,365
921
724
1,444
1,431
130
1,916
378
1,207
8,933
22,271
11,908
53, 459
13, 776
3,311
33, 663
1,954
Arrests 18 and over
White
169, 547
332
242
516
670
3,240
6,434
9,275
1,974
22, 683
7,237
228
3,091
7,703
845
1,323
990
1,704
332
842
7,609
19, 343
10, 251
40, 727
10, 606
2,901
28, 755
1,671
Race
Negro
2,732
148
48
110
196
1,164
742
1,362
214
3,984
1,834
14
317
549
65
72
74
419
40
146
28
344
1,074
1,584
1,123
5,185
1,797
279
3,605
199
Indian
12,881
34
42
169
280
349
197
1,095
279
6
132
81
10
20
34
9
49
4
3
220
1,228
433
6,910
1,148
121
1,024
72
Chinese
Japa-
nese
All
others
(includes
race un-
known)
4
6
45
40
89
17
210
116
17
10
16
25
115
100
628
22]
8
263
12
144
Oh o
lO Cl >-i O I
+ 1
'cotoos-^^^oeo c^ioooiCM-^i
++++ 'II I ++ I ' + ' +
'++
I O CO t^ o o >
O Oi lO O CO I
, 00 lO CO CO I-
t- r-l rH !M CO t^ CC fO T-H O r-l Ol lO
-HC^lCOCDOt^COi— llO
Tf< Ol 00 CO t^ " '
Tt< '^^ CD
1-H 1-1 CCCOOOrJHrt^'MO-l'M-^
notice lOOGOcot^co-^co^cocoaoo
CO I I O CO -M -^ O
++' I
I 7++ I i++'
I I
COMt^OO«OOCOCO
i Ol f<5 CO CO CO CO i-H Ol
icocortnoTfiast^io
1 CO O ^ CO 05 CO ■*!
^ -H CO t^
lO CD CD O O t^ O (
t^C^IOOClOOiOCOlO ^'MaOO>a>CO>JOOO'-<Oi
O'O-^COCOCO'COSaO 'MrJ<t---HTtiT-i005iOiOI
t^ lO O Ol CO "O t^ "O CO --I '
•>*<C«5^00CO00iM"0
^ -H t-H CO t^ lO (
+v
o CO CO ^ 00
T*; Tli CO* ^' 00
++I i+
lO OO (M 05 lO
>0 (M Ol rH CT>
r-H 00 O CO »0
1— I r^ o 03 "O
, C-l 00 ■* -^ O I
• cococo'^-rticoasoococo
CO lO -H I CO
+7 1+^
+ 1 +
lO lO t^
I +
^COOCOCOOOCOrfi'M'MrH
I I nil +7 I
I + 1
I ++
0 I^ --I CD CO 05 >0 lO 00 00 -^ O t^ 00 00 CO CO CO ■*! 00
01 CO (M ^ Ol t^ •"*! Tf< (M rt 00 t^ Tfi 00 t^ (M CO "O CD 05
CO 00 CO CO ^ 00 "' ■" ^ ~. —
00-<*<iMC0»O000000'OiO00C0O
Ol 00 CO
) lO CO '^ t^ O CO "P 00
CD ^M C-1 t^ M I
CO 0> CO >0 ■^ CO CD t^
CO O O O 00 ^ 00 CO 00 CO CO O O '
I 00 lO lO lO CO (M
COt^OiOCOCO-HC^I
+ i +++++ 1
(M(MTfHiO-'*<-^Oi0 01 COCOiOTtiicDCOCOOC-lTfOOt^
+^+
+ 1
++
t^OOCOCO^rHTfl
1 CO 00 00 o> -
lOl^COCOOOCOCOCDOl 00t^'*'OOOOt^lM(
TtlCD-MCOt^-^l-^COOi O^OlOCTiTtiCOCOCOl
00 .-H CO M -^ Ol t- CO r-^ CO -H 05 Ol 05 O CO CI iM 1
lo'i-rcoco't-rof cd'io" cD''co'Tro''>o"co'">o"t^''rd^ O '
) ^ 03 »o o
> 01 CO Cl o
I CD >0 >0 iO
^00Tt<O-*^'-iOi
lo" co'co'T-Tof 'o'lo'
O t^ rfi TfH lO
2 M
m-o-
H ^
o
Eh a
-^ CO _
3 c3 03
■-2 1 I "^
Clh P3 <tj CQ J <!
1 M '
1 !=i 1
1 M 1
, D. '
1 c ,
1 > 1
1 '^^
, OJ ,
1 a
1 bc 1
' f>> '
3
fl
.42 1
1 3
' o
J >> 1
1 y
rt t^ 1
n3
1 1^
a|J
I "^
a ?;'rH o o cu
>>3
-5 rH >
I W r/j > !^ Dh CO
i .Si ■- 2 m7 S fe « 2 .2 . g
+Jc3c3a::i-(.i::itH— cj3;r;rH33
145
Police Employee Data
This section contains tables relating to police personnel. Figures
showing police strength by number of full-time police officers and
civilian employees are based on national averages. These figures
should not be interpreted as indicating recommended or desirable
police strength. Adequate police requu'ements for a specific place
can only be determined following careful study and analysis of the
local situation together with a thorough evaluation of the numerous
factors which aft'ect local police needs.
Two tables containing police employee rates are set forth. In the
first, total employees including civilian personnel are used, whereas
in the second table only sworn personnel are used to compute rates.
The police employee rate ranges in Table 43, which include civilians,
show the interquartile range between the upper limits of the lowest
quartile and the lower limits of the highest quartile. In other words,
50 percent of the cities shown in each population group and geo-
graphic division have a police strength within the rate ranges shown.
By arraying rates in this manner, extremes are eliminated.
In Table 44 where rates are published for police officers, complete
rate ranges are provided as supplemental data for those who may be
interested in using these figures to make limited comparisons.
Another table is presented this year showing police strength for all
state police and state highway patrol organizations. This table is
designed to show, by state, the number of miles of state and Federal
highway per sworn employee, as well as the number of registered
vehicles per officer. These rates are only a rough yardstick as to
comparative workload and personnel strength because of widely dif-
fering functions and other factors. The wide variations in sworn and
civilian personnel among the various states can be accounted for in part
by the differences in responsibilities assigned to the departments. It
is pointed out, for instance, that state police generally are responsible
not only for traffic patrol, but also conduct a major portion of the
criminal investigative work in the unincorporated areas of the states.
On the other hand, the activity of the state highway patrol organiza-
tions for the most part are limited to traffic and highway patrol, which
includes handling all types of crime which come to their attention
during the performance of their patrol functions. Many of these state
147
highway patrol groups also are authorized to and do participate in
criminal investigative work when requested to do so by local depart-
ments or sheriffs' offices.
Tlie annual collection of police employee data provides figures for
police killed and assaulted. Collection of these data is supplemented
with respect to police killed in the line of duty by the use of a special
questionnaire, through the use of which additional details on this
important subject are accumulated. Data relative to police killed
and assaulted are also presented in the Summary Section of this
publication.
Table 43. — Full-Time Police Department Employees,^ December 31, 1965,
ISumher and Rate per 1,000 Inhabitants, by Geographic Divisions and
Population Groups
[1965 estimated population]
TOTAL
Population group
1
(3,613
Group I
Group II
Group III
Group IV
Group ^'
Group VI
Geographic division
cities;
(55 cities
(92 cities,
(217 cities.
(433 cities.
(974 cities,
(1,842 cities
population
over
100.000 to
50.000 to
25,000 to
10.000 to
under
109,633,000)
250,000;
250,000;
100.000:
50,000;
25,000;
10,000;
population
population
population
population
population
population
41,822,000)
13.035.000)
14,891,000)
15.061.000)
15.016,000)
9,806,000)
TOTAL: 3,613 cities;
population 109,633,000:
Number of police
employees
212, 883
110.666
22, 069
22.689*
21. 984 21. 008 14. 567
Average number of
employees per
1,000 inhabitants.-
1.9
2.6
1.7
1.5
1.6 1.4 1.6
Interquartile range.
1. 1-1. 8
1. 6-2. 7
1. 3-1. 9
1. 2-2. 1
1.1-1.7 1.1-1.6 1.0-1.8
New England: 331
cities; population
1
8,216,000:
Number of police
employees
15. 746
2. 696
2.842
4,022
2.941 2.372
873
Average number of
employees per
1,000 inhabitants.
1.9
i 4.1
2.5
1.9
1.7
1.4
1.2
Interquartile range.
1. 1-1. 7
(2)
2. 1-2. 7
1. 6-2. 0
1.4-1.9
1.1-1.5
0. 7-1. 4
Middle Atlantic: 776
cities ; population
24,456,000:
1
Number of police
':
employees
62. 967
42. 847
3.254
4.289
4,423 ; 4.930
3.224
Average nmnber of
1
employees per
1,000 inhabitants.
2.6
3.6
2.0
1.6
1. 7
1.5
1.4
Inter rjuart lie range-
1. 0-1. 8
2. 9-3. 8
1.8-2.3
1. 0-2. 1
1.2-2.0
1.1-1.8
0. 8-1. 7
East North Central: 810
'
cities ; population
'
23,827,000:
Number of police
employees.-
45. 367
25, 129
3,714
4.330
4.533 4,397
3.264
Average number of
employees per
1,000 inhabitants.
1.9
2.7
1.6
1.4
1.4
1.3
1.4
Interquartile range.
1. 1-1. 6
1. 6-3. 0
1.5-1.7
1.1-1.6
1.1-1.5 ! 1.1-1.5
1.0-1.6
West North Central: 399
1
cities; population
8,369,000:
Number of police
employees
13, 021
5,904
1.156
944
1.510 1.861
1,646
Average number of
employees per
1,000 inhabitants.
1.6
2.2
1.3
1.2
1.2 1 1.2
1.4
Interquartile range.
1.0-1.6
1. 4-2. ]
1.2-1.3
0.9-1.3
1.0-1.3
1.0-1.5
1.0-1.6
See footnotes at end of table.
148
Table 43. — Full-Time Police Department Employees,^ December 31, 1965,
Number and Rate per 1,000 Inhabitants, by Geographic Divisions and
Population Groups — Continued
[1965 estimated population]
TOTAL
Population group
(3,613
Group I
Group II
Group III
Group IV
Group V
Group VI
Geographic division
cities;
(55 cities
(92 cities.
(217 cities,
(433 cities.
(974 cities.
(l,842cities
population
over
100,000 to
50,000 to
25,000 to
10,000 to
under
109,633,000)
250,000;
250,000;
100,000;
50,000;
25,000;
10,000;
population
population
population
population
population
population
41,822,000)
13,035,000)
14,891,000)
15,061,000)
15,016,000)
9,806,000)
South Atlantic: 321
cities; population
10,661,000:
Number of police
employees
21. 892
9.431
4,258
2,324
2,124
2,088
1,667
Average number of
employees per
1,000 inhabitants.
2.1
2.8
1.6
1.8
1.6
1.7
1.9
Interquartile range-
1. 4-2. 1
1.7-3.6
1.3-1.8
1.5-1.9
1.4-1.8
1. 4-2. 1
1. 3-2. 2
East South Central: 135
cities; population
4,570,000:
Number of police
employees
7,224
2,830
1,583
456
1,070
688
597
Average number of
employees per
1,000 inhabitants-
1.6
1.6
1.6
1.7
1.6
1.4
1.6
Interquartile range-
1. 3-1. 8
1.5-1.6
1.5-1.9
1.4-2.0
1.4-1.7
1. 1-1. 7
1. 2-2. 0
West South Central: 258
cities; population
10,174,000:
Number of police
employees
13, 960
6.889
2,154
1,476
1,311
1,256
874
Average number of
employees per
1,000 inhabitants-
1.4
1.5
1.4
1.2
1. 1
1.2
1.4
Interquartile range-
1.0-1.5
1. 2-1. 9
1. 2-1. 4
1.1-1.4
1.0-1.3
0. 9-1. 5
1.0-1. 7
Mountain: 176 cities;
population 4,502,000:
Number of police
employees
6,719
2,442
605
913
1,190
750
819
Average number of
employees per
1,000 inhabitants-
1.5
1.6
2.0
1.4
1.3
1.3
1.6
Interquartile range-
1. 2-1. 8
1. 3-1. 8
1. 9-2. 5
1.0-1.6
1.2-1.4
1.0-1.5
1.3-1.9
Pacific: 407 cities;
population 14,858,000:
Number of police
employees
25, 987
12,498
2.503
3,835
2,882
2,666
1,603
Average number of
employees per
1,000 inhabitants-
1.7
2.1
1.5
1.4
1.5
1.6
1.9
Interquartile range-
1. 3-1. 9
1.3-2.3
1.3-1.7
1.2-1.5
1.2-1.6
1.3-1.8
1. 4-2. 3
Suburban Po
ice and County Sheriff Departments
Suburban: 3 1,770 agencies; population
40,251,000:
Mnmhpr nf nnlir»p pninlnvppc:
55, 040
1.4
1.0-1.6
Sheriffs: 1,154 agencies; population
32,357,000:
Number of police employees - -
32,159
Average number of employees per
1 000 inhabitants
Average number of employees per
1 ,000 inhabitants
1.0
Interquartile range
Interquartile range. -
0. 3-0. 9
' Includes civilians.
■' Only one city this size in geographic division.
3 Agencies and population represented in suburban area are also included in other city groups.
Population figures rounded to the nearest thousand,
rounding.
All rates were calculated on the population before
1-1:9
Table 44. — Full-Time Police Department Officers, December 31, 1965, Number
and Rate per 1,000 Inhabitants, by Geographic Dii^isions and Population
Groups
[1965 estimated population]
Populati
on group
TOTAL
(3,613
cities;
Group I
Group II
Group III
Group IV
Group V
Group VI
Geo{?raphic division
population
(55 cities
(92 cities.
(21 7 cities.
(433 cities,
(974 cities,
(1,842 cities
109, 633, -
over
100,000 to
50,000 to
25,000 to
10.000 to
under
000)
250,000;
2.50,000;
100,000;
50,000;
25,000;
10.000;
population
population
population
population
population
population
41.822.000)
13,035,000)
14.891.000)
15.061.000)
15,016.000)
9,806,000)
TOTAL: 3,613 cities;
population
109,633,000:
Number of police
oificers
190, 005
98, 147
19, 239
20, 191
19. 972
19.370
13. 086
Average number of
officers per 1.000
i
inhabitants
1.7
! 2.3
1.5
1.4
1.3
1.3
1.3
Rate range
0. 1-7. 5
1.0-3.8
0. 8-2. 7
0. 6-3. 2
0. 2-3. 3
0. 1-5. 2
0. 1-7. 5
New England: 331
cities; population
8,216,000:
Number of police
1
officers
14, 789
2, 495
2, 608 1 3, 766
2,801
2.289
830
Average number of
officers per 1,000
j
inhabitants
1.8
3.8
2.3
1.8
1.6
1.3
1.1
Rate range
0.2-3.8
(1)
2. 0-2. 7
1. 1-2. 6
0. 9-2. 7
0. 5-3. 0
0. 2-3. 5
Middle Atlantic: 776
cities; population
24,456,000:
Number of police
officers
58, 651
39, 842
2.930
3,953
4,197
4, 710
3,019
Average number of
officers per 1,000
inhabitants
2.4
3.3
l.«
1.5
1.6
1.4
1.3
Rate range
0. 1-5. 7
1.6-3.5
1.3-2.3
0. 6-3. 2
0. .5-3. 3
0. 1-5. 2
0. 1-5. 7
East North Central: 810
cities; population
23.827,000:
Number of police
officers
40. 529
22, 367
3,297
3.891
4,086
4. 016
2,872
Average number of
officers per 1,000
inhabitants
1.7
2.4
1.4
1.2
1.2
1.2
1.2
Rate range
0. 2-4. 4
1.0-2.9
1.1-1.7
0. 6-2. 5
0. 7-2. 7
0. 3-3. 1
0. 2-4. 4
West North Central:
399 cities ; population
8,369,000:
Number of police
officers
11,099
4,758
1,008
838
1,355
1,683
1,457
Average number of
officers per 1,000
inhabitants
1.3
1.8
1.1
1.0
1.0
1.1
1.2
Rate range
0. 3-3. 7
1.1-2.8
0.8-1.5
0.6-1.3
0.4-1.5
0. 5-2. 7
0. 3-3. 7
South Atlantic: 321
cities; population
1
10,661,000:
!
Number of police
officers
19, 367
8,267
3,706
2, 065
1,881
1,931
1,517
Average number of
officers per 1,000
inhabitants
1.8
2.5
1.4
1.6
1.5
1.6
1.7
Rate range
0. 3-7. 5
1.3-3.6
0. 9-2. 0
1.0-2.7
0. 6-2. 0
0. 4-3. 6
0. 3-7. 5
East South Central:
135 cities; population
4,570,000:
Number of police
officers
6,239
2,366
1,289
411
985
647
541
Average number of
officers per 1,000
inhabitants
1.4
1.3
1.3
1.6
1.4
1.3
1.4
Rate range
0. 2-4. 2
1.2-1.4
1.1-1.7
1.3-2.0
1.1-1.8
0. 6-2. 1
0. 2-4. 2
See footnotes at end of table.
150
Table 44. — Full-Time Police Department Officers^ December 31, 1965, Number
and Rate per 1,000 Inhabitants, by Geographic Divisions and Population
Groups — Continu eel
(1965 estimated population)
TOTAL
(3,613
cities;
population
109,633,000)
Population group
Geographic division
Group I
(55 cities
over
250,000;
population
41,822.000)
Group II
(92 cities,
100,000 to
250,000;
population
13,035,000)
Group III
(217 cities,
50,000 to
100,000;
population
14,891.000)
Group IV
(433 cities,
25,000 to
50,000;
population
15,061,000)
Group V
(974 cities,
10,000 to
25,000;
population
15,016,000)
Group VI
(1,842 cities
under
10,000;
population
9,806,000)
West South Central:
258 cities; population
10.174,000:
Number of police
officers
12, 093
1.2
0. 3-2. 4
5,725
1.3
0. 2-3. 2
21.513
1.4
0. 2-3. 7
5, 900
1.3
1.0-1.8
2,037
1.3
1.0-1.5
10, 115
1.7
1.0-1.9
1.836
1.2
0.9-1.6
499
1.6
1..3-2.3
2, 066
1.3
1.0-1.7
1,319
1. 1
0.6-1.5
803
1.2
0.9-1.7
3,145
1.2
0.9-1.9
1, 171
1.0
0. 5-1. 4
1,033
1.1
0. 5-1. 6
2,463
1.3
0. 2-3. 2
1, 111
1.0
0. 3-2. 4
653
1.1
0. 4-2. 2
2,330
1.4
0. 7-2. 5
756
Average number of
officers per 1,000
inhabitants
1.2
0. 4-2. 4
Mountain: 176 cities;
population 4,502,000:
Number of police
officers ...
700
Average number of
officers per 1,000
inhabitants
Rate rans;e
1.4
0. 2-3. 2
Pacific : 407 cities ;
population 14,858,000:
Number of police
1,394
Average number of
officers per 1,000
inhabitants
1.6
0. 4-3. 7
Suburlian Police and County Sheriff Departments
Suburban: -' 1,770 agencies; population
40,251,000:
Number of police officers
Average number of officers per 1,000
inhabitants
Rate range
48. 446
1.2
0. 1-7. 5
Sheriffs: 1,154 agencies; population
32,357,000:
Number of officers
Average number of officers per 1,000
inhabitants
Rate range
27, 299
0.8
0. 1-9. 7
1 Only one city this size in geographic division.
2 Agencies and population represented in suburban area are also included in other city groups.
Population figures rounded to the nearest thousand. All rates were calculated on the population before
rounding.
151
Table 45.— Civilian Police Department Employees. December
Percentage of Total by Population Group
31. 1965.
Population group
TOTAL, ALL CITIES
Group I (over 250,000)
(Overl ,000,000)
(500,000-1,000,000)
(250,000-500,000)
Group II (100,000-250,000)-.
Group III (50,000-100,000) __
Group IV (25,000-50,000)-..
Group V (10,000-25,000)
Group VI (2.500-10,000) . . ..
Suburl)an agencies
Sheriflfs
Percentage
civilian
employees
10.7
11.3
9.6
12.4
14.9
12.8
10.6
9.2
7.8
10.2
12.0
15.1
Table 46. — \umber of Police Officers Killed.^ 1965. by Geographic Divisions
and Population Groups
1 TOTAL
Population group
Geographic
division
' Group I
Group II JGroupIII Ciroup IV (Iroup V
Group VI
County,
State
i Over
i 250,000
100,000 to ' 50,000 to : 25,000 to ! 10,000 to
250,000 100,000 50,000 , 25,000
Under
10,000
Police and
Highway
Patrol
TOTAL
83
20
',- —
6
12
40
3
10
10
3
.! 16
.: 9
14
7
12
1
1
1
2
i
1
Middle Atlantic
! 3
i
1
1
3
Ea'^t \orth Central
3
West North Central
3
South Atlantic
2
2
1
1
3
]
3"
]
9
East South Central
5
AVest South Central
2
1
9
-
2
Pacific
4
1
6
53 killed by felons; 30 killed in accidents.
152
.0
s
I
c
!^ *
t- CC- ^
00 00
30 CO
^ 3
CO ^ ^
a.
0
I
35 g-
C C- — s ^-^
^ S 2 o
o ° o =^. =
,_3 S CM O O IC
^ o 5 o c o
5 ^ 3 o 3 o 2 ic" D o"
OO o— OO CCM o —
X3 (B
3x;
O) rj-j
i^icCMoooocor^oioo
OJ 35 OJ 30' t^ 00 OO' CM O
00 oooo-HkOi^oo-Heo
(M ■^CDCM<M(X>CQa5>0»-i
•o ll-HaDeoo>ri(Mcoa>'0
p I « >0 C9 -H CO »^' ca
|p||i||l
:?; § a 5: cB w :^ S p^
221-740'
-ce-
ll
Table 48. — Full-Tlrne State Police and Highway Patrol Employees,
December 31, 1965
Alabama
Alaska
Arizona.--.
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts---
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina-.
North Dakota.--
Ohio--
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina. -
South Dakota.. -
Tennessee
Texas
Utah
Vermont
V^irginia
Washington
West Virginia.. -
Wisconsin
Wyoming
TOTAL
510
147
414
277
502
771
1,378
743 I
175
1,717
1.065 '
544 '■
333
692
749
297
1,078 ,
785
1,573 !
Police
officers
472
618
1.000
197
296
71
157
1,403
306
2,909
891
92
1.395
569
651
2,641
152
481
147
888
2,430
234
190
1,074
737
410
416
Police
killed
433
107
324
248
3, 135
337
557
226
694
547
146
1,179
733
350
250
468
569
246
788
647
1,255
377
462
538
143
245
56
134
1, 145
230
2, 588
698
78
846
313
556
2,285
127
429
108
631
1, 374
226
123
765
421
312
232
87
40
90
85
I, 142
165
214
58
684
196
29
538
332
194
83
224
180
51
290
138
318
95
156
462
54
51
15
23
258
76
321
193
14
549
256
95
3.56
25
52
39
257
1, 0.56
67
309
316
98
184
11
Miles of
primary
highway
per police
officer
21.8
20.0
1.5. 7
48.9
4.5
24.8
2.2
2.7
15.6
.30.1
32.6
13.5
14.9
28.3
41.2
4,5.1
7.7
14.8
2.4
3.8
7.3
31.6
23.1
16.3
41.2
38.2
37.3
14.0
1.7
45.0
5.2
18.6
81.1
21.8
37.6
7.6
21.8
70.9
13.9
44.4
24.4
18.3
11.3
10.0
16.4
.50.3
63.1
State motor
vehicle
registrations
per police
officer
154
Table 49. — Number of Full-Time Police Department Employees j December 31,
1965, Cities 25,000 and over in Population
Citv 1)V state
Nuini)er of police depart-
ment employees
City by state
Number of police
ment employ
depart-
ees
Total
Police
oflficers
Civilians
Total
Police
officers
Civilians
ALABAMA
Bessemer
Binningham
51
542
44
60
58
81
203
321
227
42
101
92
32
41
55
798
59
42
349
42
23
35
98
44
196
99
62
81
90
255
74
49
164
53
166
94
86
166
39
70
130
83
96
41
65
64
106
56
37
74
43
32
90
289
127
64
137
168
33
54
99
89
50
126
60
482
40
58
53
78
155
256
192
41
95
70
29
38
49
677
50
38
266
41
22
29
92
43
177
94
59
74
74
207
64
44
128
41
153
87
65
137
30
57
102
63
74
34
57
55
87
44
31
56
37
27
76
225
100
54
112
134
29
48
84
72
45
95
1
60
4
2
5
3
48
65
35
1
6
22
3
3
6
121
9
4
83
1
1
6
6
1
19
5
3
7
16
48
10
6
36
12
13
21
29
9
13
28
20
22
7
8
9
19
12
6
18
6
6
14
64
27
10
25
34
4
6
15
17
5
31
CALIFORNIA— Con.
La llabra
La Mesa
50
37
26
42
704
6,613
45
60
37
79
51
58
61
60
61
43
55
97
25
835
66
77
82
80
25
82
214
11
105
66
68
73
168
173
446
91
214
39
853
2,035
42
388
81
40
100
63
201
92
61
44
163
t 60
1 84
1 51
i 179
102
179
32
86
62
72
58
89
34
64
58
146
981
43
34
46
137
38
34
21
42
599
6,181
39
40
37
65
44
52
39
51
58
36
46
75
21
638
49
68
68
73
19
76
176
11
91
49
57
64
138
137
372
71
171
32
721
1,786
36
357
62
37
83
40
151
80
44
38
125
48
77
41
155
79
149
25
73
54
56
46
71
27
57
68
126
819
40
26
36
121
12
3
Livermore
6
T")ntbin
Lodi
Florence
Long Beach
105
1, 432
Iluntsville
Lynwood
6
Mobile
Manhattan Beach
Menlo Park
10
Montgomery
Selma
Modesto
14
Monrovia ... _
7
Montebello
6
ALASKA
Monterey. ... ..
12
Monterey Park
Mountain View
Napa
9
3
7
ARIZONA
Flagstaff
National City
Newport Beach
Novato
9
22
4
Glendale
197
Mesa _ ._- _
(5
Phoenix
9
Scottsdale
Orange
14
Tempe
7
Tucson
6
Yuma
Palo Alto
Pasadena
38
ARKANSAS
Pleasant Hill
Pomona
14
Redlands
7
Fort Smith
Redondo Beach
Redwood City
Richmond
11
Hot Springs..
9
T.ittlo T?nr>lr
30
North Little Rock- _-
Pine Bluff
Riverside ..
36
Sacramento
73
Salinas...
20
CALIFORNIA
San Bernardino
43
Alameda
San Diego
132
San Francisco
San Ciabriel
249
Anaheim
6
Arcadia
Azusa
San Jose
San Leandro
31
19
Bakersfield
San Luis Obispo
San Mateo
3
Baldwin Park
17
Berkeley
San Rafael
IS
Beverly Hills
Santa Ana
5C
Buena Park
Santa Clara .
12
Burbank
Santa Cruz
t
Burl in game
Santa Maria
fc
Chula Vista
Santa Monica
Santa Rosa
South Gate
3^
Compton
Concord
South San Francisco.
Stockton
1(
Covina
2'
Culver City .. . -.
Sunnyvale _.
2{
Daly City
Torrance
Upland
3(
t
El Cajon
Vallejo
IC
El Cerrito. .-
Ventura
West Covina.
e
El Monte
n
Westminster...
r.
Fairfield
Whittier.
u
COLORADO
Arvada
Fresno
FuUerton.. ..
'
Glendale
Boulder
Glendora
Hawthorne
Colorado Springs
Denver
2(
16^
Huntington Beach...
Huntington Park
Inglewood
Fort Collins
^
Greeley ... .
1
Pue))lo
It
155
Table 19. — Number of Fidl-Time Police Department Em^ployees^ December 31,
1965, Cities 25,000 and over in Population — Continued
City by state
Number of police depart-
ment employees
Total
Police
officers
Civilians
CONNECTICUT
Bridgeport ..
391
62
65
76
39
68
134
78
385
57
91
53
90
164
427
75
143
49
28
218
81
48
30
38
235
107
74
41
254
3. 159
98
101
116
301
55
52
84
108
474
39
104
869
267
55
45
197
44
119
330
61
95
677
80
888
159
31
192
30
44
166
51
374
57
65
73
37
66
114
75
348
55
81
51
86
150
408
72
128
45
28
208
76
47
29
38
225
99
73
39
223
2.911
71
82
87
241
43
35
71
95
393
37
85
633
205
47
4 2
164
37
106
252
52
88
526
79
765
136
31
179
27
43
163
45
17
5
Bristol
Danbury _ .__
East Hartford
Eufield
3
2
2
20
3
37
10
0
4
14 i
V
15
4
Fairfield ..
Greenwich .
Hamdea. _ ..
Hartford
Manchester
Township
Meriden . _____
Middletown.
Milford Town
New Britain.
New Haven
New London
Norwalk.. .
Norwich
SouthingtonTown..
Stamford
10
5
1
1
Stratford
Torrington
Trumbull
Walliugford. _.
\\'aterbury
10
8 :
1 ;
31 ,1
248 I
27 i
19 ii
Z\
1?
13
13 1
81
9 1
19
236
62
8
3
33
13
78
9
7 i
151
1
123
23
West Hartford
West Haven
Westport
DELAWARE
Wilmington __ _
DISTRICT OF
COLUMBIA
Washington
FLORIDA
Clearwater
Coral Gables
Daytona Beach
Fort Lauderdale
Fort Alvers
Fort Pierce ...
Gainesville
Hialeah . .
Tacksonville..
Key West
Lakeland. ...
Miami ..
Miami Beach
North Miami
North Miami Beach.
Orlando .
Panama City
Pensacola
St. Petersburg
Sarasota..
Tallahassee
Tampa
GEORGIA
Albany _.
Atlanta
Augusta
College Park
Columbus ._-
13
3
'A
6 1
Decatur .
La Grange
Macon. "'_._ _ _ _
Marietta
City by state
Number of police depart-
ment employees
Total
GEORGIA— Con.
Rome
Savannah.
Valdosta. _
HAWAII
Hilo
Honolulu
IDAHO
Boise
Idaho Falls.
Pocatello.. _
ILLINOIS
Alton
Arlington Heights.
Aurora
BeUeville
Berwyn
Bloomington
Calumet City
Champaign
Chicago
Chicago Heights...
Cicero
Danville
Decatur
Des Plaines
East St. Louis
Elgin
Elmhurst
Evanston
Evergreen Park. ..
Freeport
Galesburg
Granite City
Harvey
Highland Park
Joliet
Lombard
May wood
Moline
Morton Grove
Mount Prospect- -.
Niles
North Chicago
Oak Lawn
Oak Park
Park Forest
Park Ridge
Pekin
Peoria
Quincy
Rockford
Rock Island
Skokie
Springfield
Urbana
Villa Park
Waukegan
Wheaton
Wilmette
INDIANA
Anderson
Bloomington.
East Chicago.
Elkhart
Evansville
Fort Wavne-.
Gary
Hammond
56
203
40
49
44
93
47
63
49
26
58
11. 745
59
101
47
82
55
104
72
53
141
28
34
42
41
35
42
80
31
39
54
33
31
43
20
52
Police
ofiicers
26
52
168
39
Civilians
42
39
33
32
196
178
00
52
190
166
87
71
120
107
115
92
29
26
25
21
70
63
30
27
41
33
106
92
53
41
141
135
83
70
240
224
259
251
294
255
179
164
83
ic
648
US
88
6
58
g
46
12
42
7
37
7
84
9
42
5
58
5
44
5
23
3
56
9
10, 269
1.476
50
S
99
2
39
8
69
13
53
90
14
54
18
49
4
109
32
26
••>
30
4
36
6
41
35
35
7
75
5
24
7
39
47
7
30
3
26
5
39
4
18
•>
49
3
156
Table 49. — Number of Full-Time Police Department Employees, December 31,
1965, Cities 25,000 and over in Population — Continued
City by state
Number of police rlepart-
iiient (Muployces
City by state
Number of police depart-
ment employees
Total
Police
officers
Civilians
Total
Police
officers
Civilians
INDIANA— Con.
Indianapolis
1. 027
83
66
53
62
51
111
43
64
211
116
35
41
27
138
38
60
115
256
68
44
44
34
130
106
42
242
42
24
41
32
49
169
392
46
98
176
644
67
80
59
55
308
38
46
49
83
32
1,249
254
33
58
62
127
3, 365
63
68
916
82
65
52
58
48
104
43
60
202
109
32
32
24
121
35
58
110
231
63
•>7
34
32
100
94
36
192
34
23
34
30
40
142
310
45
88
150
542
54
78
57
53
271
38
42
47
71
31
1,087
222
32
48
55
HI
3,003
59
65
111
1
1
1
4
3
7
MASSACHUSETTS
Arlington
Attleboro
Belmont
91
41
51
61
2,696
58
149
149
240
76
97
120
258
81
82
54
77
114
139
41
37
194
124
116
55
55
51
43
249
166
43
42
89
178
100
81
155
38
102
78
40
45
54
84
44
416
52
122
79
88
45
201
61
4,841
54
30
47
410
38
267
81
115
38
40
85
151
216
66
93
38
31
39
82
40
47
58
2,495
54
143
142
230
94
117
236
74
80
52
74
112
130
39
35
181
124
112
53
54
48
42
234
160
43
42
84
165
95
76
148
37
100
74
38
43
53
82
44
362
49
107
64
83
38
179
58
4,401
46
28
41
324
35
226
73
100
32
38
74
124
187
63
83
34
28
38
9
Kokomo
I
Ivafavette
4
Marion
Michigan City
Mishawaka
Beverly
Boston
Braintree
3
201
4
Muncie
Brockton
6
New Albany ._
Brookline
Cambridge
Chelsea
Richmond
South Bend
4
9
7
3
9
3
17
3
2
5
25
5
17
10
9
30
12
6
50
8
1
7
2
9
27
82
1
10
26
102
13
2
2
2
37
10
4
Terre Haute
Chicopee - --
3
Everett
3
IOWA
Fall River
oo
Fitchburg
7
2
Gloucester
Haverhill
2
Cedar Falls
3
Cedar Rapids
Clinton
Council Bluffs
■)
Lawrence
Leominster
9
Davenport
Des Moines
Lexington
•>
Lowell
13
Dubuque
Iowa City
Mason Citv
Maiden
Medford
4
Melrose
2
Milton
1
Sioux City
Natick
3
Waterloo
Needham
New Bedford
Newton
1
KANSAS
15
6
Northampton
Norwood-.
Kansas City_
Lawrence
Pittsfield
5
Quincy
13
Leavenworth
Revere
Salem
5
5
Prairie Village
Salina
Somerville
7
Wakefield
1
Topeka
Wichita
Waltham
2
Watertown
4
Welleslev
0
KENTUCKY
Westfield
0
Bowling Green
Covington
Lexington
Louisville
Newport
Owensboro
Padueah
West Springfield
1
9
Woburn
54
MICHIGAN
Allen Park
3
15
LOUISIANA
Battle Creek
15
Bay City
5
Alexandria
Birmingham
Dearborn
7
Baton Rouge
Rn<5<jipr ("'itv
99
Dearborn Heights...
Detroit
3
Houma
4
162
32
1
10
7
16
362
4
3
440
Lake Charles
East Detroit
8
East Lansing
Ferndale
9
(i
New Orleans
FUnt
86
Garden City
3
MAINE
Grand Rapids
Hamtramck
41
8
Highland Park -
HoUand..
15
6
Bangor
Inkster.-
2
Lewiston
Jackson. -
11
Portland
27
Lansing
29
MARYLAND
Lincoln Park
Livonia -- -
3
10
Baltimore
Cnmhprlnnd
Madison Heights
Midland
4
3
Hagerstown
Monroe
1
157
Table 49. — Number of Full-Time Police Department Employees, December 31,
1965, Cities 25,000 and over in Population — Continued
City by state
MICHIGAN— Con.
Mount Clemens.
Muskegon
Oak Park
Pontiac
Port Huron
Roseville
Royal Oak
Saginaw
St. Clair Shores.
Southfield
Warren
Wyandotte
Wyoming
MINNESOTA
Austin
Bloomington
Brooklyn Center.
Coon Rapids
Crystal
Duluth
Edina
Mankato
Minneapolis
Minnetonka
Moorhead
Richfield
Rochester
St. Cloud
St. Louis Park...
St. Paul
Winona
MISSISSIPPI
Greenville. -
Gulf port
Hattiesburg.
Jackson
Laurel
Natchez
Vicksburg..
MISSOURI
Columbia
Ferguson
Florissant
Independence
Jefferson City....
Joplin
Kansas City
Kirk wood
Overland
St. Joseph...
St. Louis
Sedalia
Springfield
University City.
Webster Groves.
MONTANA
BilHngs
Butte
Great Falls.
Missoula
NEBRASKA
Grand Island.
Omaha
Number of police depart-
ment employees
Total
32
87
67
140
59
56
106
157
80
59
171
65
58
37
50
24
17
25
134
32
36
792
13
23
36
72
42
41
474
38
75
46
53
328
51
54
45
58
30
62
94
37
63
1.174
43
32
108
2, 582
31
123
59
34
76
37
490
Police Civilians
officers
30
72
59
116
49
53
91
140
76
46
154
58
51
35
47
20
16
24
121
28
34
725
13
23
34
72
40
39
414
37
60
45
46
267
46
54
42
51
29
52
84
37
54
897
36
26
94
1.987
31
117
55
29
37
425
City by state
6
14
595
Number of police depart-
ment employees
NEVADA
Las Vegas
North Las Vegas.
Reno
NEW HAMPSHIRE
Concord.-.-
Manchester.
Nashua
Portsmouth.
NEW JERSEY
Atlantic City
Bayonne
Belleville
Bergenfield
Bloomfield
Camden
Cherrv Hill
Clifton
Cranford Township..
East Brunswick
Township
East Orange
Edison
Elizabeth
Englewood
Ewing Township
Fair Lawn
Fort Lee
Garfield
Hamilton Township.
Hoboken.
Irvington
Jersey City
Kearny
Linden
Livingston
Lodi
Long Branch
Madison Townsiiip_.
Middletown Town-
ship
Montclair ...
Neptune Township..
Newark
New Brunswick
North Bergen
Township
Nutley
Orange
Paramus
Parsippany-Troy
Hills
Passaic _-.
Paterson
Pennsauken
Perth Amboy
Piscatawav Township
Pla infield
Rahway
Ridgewood
Sayreville
Teaneck Township
Trenton
Union City
Union Township
Vineland
Westfield
West New York
West Orange
Woodbridge Town-
ship
Total
295
52
180
46
122
76
41
230
187
65
39
10(i
256
55
123
41
29
168
84
273
59
30
47
45
48
98
156
111
921
120
119
42
39
48
39
40
97
41
1,674
89
115
53
82
64
37
132
343
46
109
36
99
()6
40
33
62
275
122
91
48
52
81
Police Civilians
officers
248
50
144
42
115
40
102
239
48
115
40
26
164
80
256
59
28
45
45
46
93
154
103
828
119
116
41
38
4()
39
37
89
41
1.401
86
105
51
81
61
37
120
316
39
95
36
90
63
39
30
60
251
101
90
47
51
81
86
158
Table 49. — Number of Full-Tirne Police Department Employees, December 31,
1965, Cities 25,000 and over in Population — Continued
City by state
NEW MEXICO
Alauiosordo
Albucjuerciue
Carlsbad
Clovis
Fannington
Ilobbs
Las Cruces
Roswell
Santa Fe
NEW YORK
Albany
Amherst
Amsterdam
Auburn
Binghamton
Brighton
BulTalo
C heektowaga
Clarkstown
Colonie Town
Elmira
Freep'Tt
Garden City
Glen Cove
Greece
Greenburgh
Hempstead
Irondequoit
Ithaca
Jamestown
Kingston
Lackawanna
Lockport- -
Mount Pleasant
Mount Vernon
Newburgh
New Rochelle
New York
Niagara Falls
North Tonawanda__.
Oransetown
Port Chester
Poughkeepsie
Ramapo
Rochester
Rome
Schenectady
Syracuse
Tonawanda Town..
Troy
ITtica
Watertown
West Seneca
White Plains
Yonkers
NORTH CAROLINA
Asheville
Burlington
Durham
Fayette ville
Gastonia
Goldsboro.
Greensboro
Greenville
High Point
Kannapolis
Kinston
Raleigh
Rocky Mount
Wilmington
Wilson
Wlnston-Salem
Number of police depart-
ment employees
Total
259
Police
officers
Civilians
City by state
NORTH DAKOTA
Bismarck
Fargo
Grand Forks
Minot
OHIO
Akron
Alliance
Ashtabula
Barberton
Canton
Chillicothe
Cincinnati
Cleveland
Cleveland Heights. -
Columbus
Cuyahoga Falls
Dayton
East Cleveland
Elyria
Euclid
Fairborn
Findlay
Hamilton
Kettering
Lake wood
Lancaster
Lima
Lorain
Mansfield
Maple Heights
Marion
Massillon
Mentor
Middletown
Norwood
Portsmouth
Sandusky
South Euclid
Springfield
Toledo
Upper Arlington
Warren
Whitehall
Youngsto wn
Zanesville
OKLAHOMA
Bartlesville
Enid -
Lawton
Midwest City
Muskogee
Norman
Oklahoma City
Stillwater
Tulsa
OREGON
Corvallis
Eugene
Medford
Portland
Salem
PENNSYLVANIA
Abington Township
AUquippa
Allentown
Altoona
Baldwin Borough-..
Number of police depart-
ment employees
al
Police
officers
42
38
87
75
52
48
44
41
309
295
39
34
34
30
34
33
17S
166
33
31
963
859
295
2,040
68
65
823
687
49
47
434
378
72
65
44
41
96
84
33
30
36
30
97
94
41
39
72
68
37
35
78
69
71
70
74
71
38
38
42
40
35
32
24
21
78
71
45
45
53
52
46
42
39
34
121
112
643
603
28
26
/ /
75
34
31
3C1
278
42
31
41
37
55
47
75
74
37
32
54
47
41
38
407
357
32
31
340
284
31
27
107
90
49
42
838
699
98
65
61
61
29
29
176
151
103
91
25
21
159
Table 49. — Number of Full -Time Police Department Employees, December 31,
1965, Cities 25,000 and over in Population — Continued
City by state
Number of police depart-
ment employees
1
City by state
Number of police depart-
ment employees
Total
Police
officers
Civilians
Total
Police
officers
Civilians
PENNSYLVANIA—
Continued
28
117
57
60
108
57
193
32
157
60
90
91
42
121
28
46
62
14
48
7,815
1.638
29
48
191
21
23
29
166
27
104
41
59
84
105
86
85
154
521
133
103
50
140
166
48
56
83
39
32
49
96
219
64
45
60
25
108
50
55
82
53
182
31
151
57
77
87
41
115
22
42
60
14
44
7,194
1.593
28
44
159
21
19
24
138
27
103
34
57
82
99
81
79
141
449
121
98
50
118
144
45
53
69
37
29
46
85
193
62
38
49
3
9
7
5
26
4
11
1
6
3
13
4
6
6
4
2
TENNESSEE-Con.
Knoxville
285
991
29
653
41
133
209
64
347
47
138
47
80
31
265
1.532
32
39
402
589
84
38
29
38
1.578
56
35
29
52
57
184
33
22
46
96
117
36
25
81
11
91
792
33
43
31
69
49
122
131
88
47
31 (!
48
173
223
62
100
105
114
226
798
29
544
38
116
174
62
248
41
121
40
51
29
237
1.330
27
33
345
507
76
34
25
27
1.318
48
30
29
52
54
174
33
21
40
87
96
34
17
71
81
33
77
672
29
40
29
66
36
100
112
76
43
251 i
43 1
144
196
60
95
95
97
59
Bensalem Townsliip.
193
Bethlehem __^
Morristown
Bristol Township
Nashville
109
Cheltenham Town-
Oak Ridge
3
ship
TEXAS
1 Aliilene
Chester
Erie
17
Falls Township
35
Harrisburg
2
Haverford Township.
Austin... .....
99
Johnstown
6
Lancaster ..
' Beaumont
17
Lebanon.-^ .. .
Lower Merion
i Brownsville.
29
Township
Bryan
2
Millcreek Township
Mount Lebanon
Corpus Christ!
' Dallas
28
202
Township. .._ __
Norristown
: Denton
6
North Huntingdon
Township. . . ..
; El Paso .
1 Fort Worth
57
82
Perm Hills Town-
4
621
45
1
4
32
4
5
28
1
Galveston
9
ship
Philadelphia
Pittsburgh
Grand Prairie
Haltom City
4
4
Pottstown
Radnor Township. _
Houston
i Irving
260
g
Reading
' Killeen
5
Shaler Township
Kingsville
Springfield Town-
Laredo .. .
ship ...
3
State College
Lubbock
10
Upper Darby
Township
Marshall.
1 McAllen
1
West Mifflin
Mesquite
g
Wilkes-Barre
1 I
^i
6
12 '
5 '
22 i
22
3
3
14
2
3
3
11
26
2
7
11
Midland. .
9
Wilkinsburg
Odessa
21
Williamsport
Orange .
2
York
Pampa
g
Pasadena .
10
RHODE ISLAND
Port Arthur
Richardson
6
5
Cranston... .. .
San \n(Tpln
14
120
East Providence
San Antonio
Newport-.
Sherman
4
Pawtucket
Temple ....
3
Providence
Texas Citv
2
Warwick
Woonsocket
Tyler.
3
Waco
22
SOUTH CAROLINA
Anderson .
Wichita Falls
UTAH
Ogden
19
Charleston .
Columbia .
Florence
Rock Hill.
Provo
4
Salt Lake City
VERMONT
Burlington
VIRGINIA
Spartanburg
Sumter
SOUTH DAKOTA
Aberdeen '
Rapid Citv
59
5
Sioux Falls
29
TENNESSEE
Chattanooga... .
Arlington
Charlottesville
Chpsanpntp
27
2
5
Jackson..
Danville
10
17
Johnson City....
Kingsport
Lynchburg
96 89 1
160
Table 49. — Number of Full- Time Police Departm,ent Employees, December 31,
1965, Cities 25,000 and over in Population — Continued
City by state
Number of police depart-
ment employees
City by state
Numher of pohce depart-
ment employees
Total
Police
officers
Civilians
Total
Police
officers
Civihans
VIRGINIA-Con.
Newport News
Norfolk
148
473
43
167
477
151
132
49
50
77
30
37
1,047
270
237
56
41
78
149
103
52
93
138
429
40
155
441
143
123
40
48
70
30
32
897
234
217
54
32
67
140
96
44
91
10
44
3
12
36
8
9
9
2
WISCONSIN
Appleton
Beloit....
79
55
63
52
131
56
129
75
244
57
2,049
70
166
85
61
63
49
88
129
50
80
330
139
5,448
75
62
51
45
116
53
115
69
203
53
1,919
67
156
81
60
60
49
78
111
42
54
262
130
4,765
4
3
Petersburg
Eau Claire
12
Fond du Lac
Green Bay
Janesville
Kenosha
La Crosse
Richmond
Roanoke
Virginia Beach
15
3
14
6
WASHINGTON
Bellingham
Madison
Manitowoc
Milwaukee
Oshkosh
41
4
130
Bremerton..
Everett
3
10
Long view... _ . .
Sheboygan
Superior
Waukesha...
Richland
Seattle
5
150
36
20
2
9
11
9
8
2
1
3
Spokane
Wausau
Wauwatosa
West Allis
Tacoma
10
Vancouver.. _
18
Walla Walla
WYOMING
Casper
Cheyenne
Canal Zone.
WEST VIRGINIA
Charleston
Huntington
8
26
68
Parkersburg
Wheeling
Guam
Puerto Rico
9
683
221-746°-
-12
161
Table 50.-
•Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
ALABAMA
21
25
12
4
15
20
7
20
5
15
9
25
5
9
7
6
11
25
13
8
6
10
11
17
23
16
37
15
11
11
2
11
18
19
28
18
9
12
3
19
7
4
25
8
8
5
9
18
9
6
3
17
6
12
12
4
4
14
3
8
10
16
12
8
8
34
CALIFORNIA
Albany.
22
5
10
29
13
9
6
16
15
15
21
32
9
27
25
5
14
0
10
22
22
5
8
20
5
26
18
14
9
33
22
11
26
8
15
12
3
1
31
12
6
22
10
3
7
25
19
7
13
7
5
9
40
10
99
"5
37
8
11
26
10
1
4
19
5
15
8
6
6
6
28
17
32
18
14 1
CALIFORNIA-
Continued
Holtville
Auburn
Alturas
12
Anderson. ...
Huron. . _ . .
4
Antioch
Imperial _
10
C hickasaw
Areata
Imperial Beach
Indio
18
Fairfield
Arroyo Grande
28
lone.. _
3
Fort Favne
Atherton
Isleton
3
Atwater
Jackson ...
4
Guntersville
Auburn
Kensington.- .
9
Hartselle
B anning
Kerman
4
Barstow. ._ _
King Citv
10
Hueytown
Beaumont
Kingsburg
9
Lafayette. ._ .
Bell
Laguna Beach
Lakeport .__
31
Behnont
5
Marion
Belvedere
La Palma
6
Midfield
Benicia
Larkspur
10
Biggs. -- - . .
LaVerne__ ... _ .
17
Northport
Bishop
Lemoore
9
Oneonta
Blvthe
Lindsay
12
Oxford
Brea
Livingston
6
Prattville
Brentwood
Lompoc
34
Saraland
Broadmoor
Los Altos
26
Sheffield
Calexico
Los Gatos-. - - -
23
Tallassee
Madera
97
Troy
Campbell
Manteca
16
Tuscumbia. . .
Carlsbad..
Martinez... _ _
19
C armel
Marysville
28
ALASKA
Ceres
Mavwood
'?5
Chico
McFarland
7
Fairbanks -
Chino
Mendota
6
Ketchikan
Chowchilla
Merced
38
Kodiak
Millbrae .
23
Sitka
Cloverdale
Mill Vallev
16
Valdez
Clovis
Milpitas
22
31
ARIZONA
Colfax
Morro Bay
11
Colma_ _ ..
Needles
10
Avondale. ... .
Col ton
Newark
21
Bisbee
Colusa
Newman
4
Casa Grande
Corcoran.
Ojai. .
13
Chandler
Orange Cove
Orland
8
Douglas
Coronado
8
Globe
Corte Madera
Cotati
Oroville
25
Holbrook
Pacific Grove
Palm Springs
Palos Verdes
Estates
18
Huachuca
Crescent City
66
Nogales--. - . .
Page... -.
Davis
19
Peoria.
Desert Hot Springs.
Dinuba - .
Parlier
4
Prescott
Paso Robles
17
Saflford ...
Dixon
Dos Palos
4
Sierra Vista
Ferris
8
Tolleson
Petaluma.
24
Williams .
El Centro
20
Winslow
Elsinore
Pinole
15
Emeryville
Pismo Beach
Pittsburg
10
ARKANSAS
E seal on
31
Escondido
Placentia
22
Arkadelphia
Fillmore
Folsom
Placerville
13
Batesville
13
Booneville
Port Hueneme
Portola
20
Camden... _
Fort Bragg
3
Harrison
Red Bluff
18
Hope ..
Redding
39
Jacksonville
Gait
Gilrov
Reedley
13
Mena
Rialto
29
Monticello
Rio Dell
3
Nashville
Grass Valley
Gridley
Rio Vista
5
Paragould . .
Ripon
6
Piggott.
Grover City
Riverbank
6
Russellville
Rocklin
Rohnert Park
Roseville
Ross
3
Siloam Springs
Springdale.. .
Half Moon Bay
Hanford
5
26
Stuttgart
Hemet
4
Van Buren
Hermosa Beach
Hillsborough
Hollister
St. Helena
San Anselmo
San Carlos
7
Walnut Ridge
West Memphis
17
32
162
Table 50.— Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000— Continued
City by state
Number of
police
department
employees
City by state
Numl)er of
police
department
employees
City by state
Number of
police
department
employees
CALIFORNIA—
Continued
27
36
14
8
28
36
29
20
37
30
11
14
11
16
5
9
34
32
5
10
11
7
24
27
18
16
21
41
23
62
13
37
50
12
30
6
4
10
8
4
4
28
10
25
10
10
7
9
13
13
14
6
17
3
7
11
35
10
10
12
7
29
21
17
6
7
10
6
8
12
7
15
CONNECTICUT
Avon
6
8
22
26
17
7
6
18
20
16
3
24
8
19
33
28
23
29
10
17
17
9
8
26
9
1
21
20
15
17
31
11
12
14
11
29
14
23
5
8
7
4
11
10
23
14
4
44
33
7
33
34
11
18
25
17
36
12
9
12
14
28
12
31
16
17
8
12
5
FLORIDA— Con.
Miami Shores
Miramar ...
31
San Clemente
San Fernando
Bethel
15
Bloomfleld
Naples -
20
Branford .
Neptune Beach
New Port Richey...
New Smyrna
Beach
4
San Tnrinto
Cheshire
7
Clinton. _.
Danielson
22
Santa Paula
Derby _ _
North Palm
Beach
9
Seal Beach
Glastonbury
Granby
Ocala
39
Ormond Beach
Palatka
23
Groton Borough
Madison
16
Palm Bay
7
Shafter
Monroe. ...
Palm Beach
Palm Springs
Piiiellas Park
Plantation
58
Sierra Madre
Soledad _
Naugatuck
5
New Canaan
Newington
20
21
South Pasadena
North Haven
Old Saybrook
Pompano Beach
Port St. Joe
59
5
Suisun City
Quincy.
27
Plainville
Rockledge
Safety Harbor
St. Cloud
8
Taft
Putnam .
4
Rocky Hill
8
Tracy
Shelton .
St. Petersburg
Beach
18
Turlock
Sprague
Sanford
28
Sebring
15
Ukiah
Vernon.
South Miami
Starke --
27
University of
California
WMterford
12
Watertown
Stuait
Surfside
11
Wethersfield
Wilton
18
Tarpon Springs
Temple Terrace
Treasure Island
West Miami
Winter Haven
Zephyrhills
13
Winsted ... .
13
Visalia
Wolcott
11
Walnut Creek
Wasco
Woodbridge
DELAWARE
Dover
9
39
8
Weed
GEORGIA
Americus
Williams
Willits
Milford
Willows
22
Winters
New Castle
Barnesville
8
Wondlake
Seaford
Calhoun
8
Woodland
Canton .
7
Yreka
FLORIDA
Apalachicola
A nnnkn
CarroUton
19
Vnl-id Pit-^T
Cordele
17
Dalton .. - .. - .
21
COLORADO
Elberton . .
IS
Gainesville
33
Alamos&
Au)")urndale . .
Garden City
Greensl)oro
4
Bartow
Bay Harbor Islands.
Biscayng Park
3
Griffin
5C
Hapeville
IS
Canon City..
Lafayette. .
V2
Bradenton
Madison . ._
C
McRae
7
Delta
Cocoa
Milledgeville
Tifton
23
Cocoa Beach
Dade City
1^
Washington
Winder
Glenwood Springs..
Golden _ ...
1'
Deerfield Beach
IDAHO
Blackfoot
Eau Gallic
La Junta
Eustis
1^
Green Cove
Springs
Buhl
^
Leadville
Burlev -
ic
T.iftieton
Gulfport
Caldwell
2(
Haines City
Hallandale
Coeur d'Alene
Jerome... ..
1(
Loveland
^
Manitou Springs
Monte Vista
Holly Hill
Kellogg .
1(
Jacksonville
Beach
2(
Montpelier
(
Rocky Ford
Salida
Moscow.- -
r
Lake Wales
Mountain Home....
Nampa.. ... ...
L
Thornton
2'
Maitland
Payette _
1
Westminster
Margate
Rupert
i:
Table 50.— A umber of Full-Tiine Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
IDAHO— Con.
Salmon
Sandpoint---
Shelley
Soda Springs.
Twin Falls...
Weiser
ILLINOIS
Abingdon
Addison
Barrington
Barton ville
Batavia
Belhvood
Belvidere
Berkeley
Bethalto
Bourbonnais
Bradley
Bridge view
Broadview
Brookfield
Bushnell
Cahokia
Calumet Park
Canton
Carbondale
Carini
Carpentersville...
Carterville
Gary
Centralia
Charleston
Chester
Chillicothe
Clarendon Hills...
Columbia
Crest Hill
Crete
Deerfield
DeKalb
Dixmoor
Dixon
Downers Grove
Dupo
Dwight
East Alton
East Mohne
Edwardsville
Effingham
Eldorado
Elk Grove Village .
Elm wood Park
Eureka
Fairfield
Fairmont City
Flora
Flossmoor
Forest Park
Fulton
Galena
Geneseo
Geneva
Gillespie
Glencoe
GlenEUyn
Glenview
Golf
Grayslake
Hanover Park
Harvard
Harwood Heights..
Hickory Hills
Highland
High wood
Hillsboro
Number of
police
department
employees
City by state
ILLINOIS— Con.
Hinsdale
Hoffman Estates...
Homewood
Hoopeston
Itasca
Jacksonville
Jersey ville
Kenilworth
La Grange
La Grange Park...
Lake Forest
Lake Zurich
Lansing
La Salle
Lawrenceville
Lebanon
Lincoln
Lincoln wood
Lisle
Litchfield
Loves Park
Lyons
Macomb
Madison
Markham
Marquette Heights
Mascoutah
Matteson
Mattoon
McLeansboro
Mendota
Metropolis
Milan
Monmouth
Morris
Morrison
Morton
Motmt Morris
Mount Olive
Motmt Vernon
Mundelein
Naperville
Nashville
Nokomis
Normal
North Aurora
Northbrook
Northfield
Northlake
North Riverside
O'Fallon
Oglesby
Olney
Olympia Fields
Orland Park
Ottawa
Palatine
Pana
Peoria Heights
Peru
Pittsfield
Piano
Polo
Princeton
Rantoul
River Forest
Riverside
Robinson
Rochelle
Rockdale
Rock Falls
Rolling Meadows.-.
Roselle
Round Lake Beach.
St. Charles
Salem
Sandwich
Numljer of
police
department
employees
City by state
ILLINOIS— Con.
Schiller Park
Shelby ville
Silvis
South Beloit
South Chicago
Heights
South Elgin
South Holland. .__
Staunton
Stone Park
Stream wood
Streator
Sullivan
Swansea
Taylorville
Thornton
Vandalia....
Venice
Washington
Washington Park.
Waterloo
Watseka
Wauconda
Westchester
West Dundee
Western Springs..
West Frankfort-- -
Westmont
Westville
White Hall
Wilmington
Winnetka
Wood River
Woodstock
Zion
Number of
police
department
employees
INDIANA
Angola
Attica
Auburn
Aurora
Batesville
Bedford
Berne
Bicknell
Boonville
Brazil
Brookville
Chesterton
Clinton
Columbus
Corydon
Crawfordsville..
Crown Point---
Decatur
Delphi
Diuikirk
East Gary
Frankfort
Garrett
Gas City
Goshen
Greencastle
Greenwood
Griffith
Highland
Hobart
Huntingburg
Huntington
Jasonville
Jasper
Jeffersonville
Kendallville
Knox
La Porte
Lawrence
164
Table 50. — Number of Fiill-Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
INDIANA-Con.
Lawrenceburg
Lebanon
8
12
6
32
20
6
8
10
11
13
38
10
15
8
9
26
9
10
18
12
12
8
4
12
10
4
13
22
19
6
8
26
23
21
14
25
5
27
5
8
4
4
3
2
16
4
15
9
16
10
11
4
9
8
4
3
8
10
6
11
18
4
8
9
6
11
12
4
23
7
8
IOWA— Con.
Marion
Marshal Itown
Missouri Valley
Mount Pleasant
New Hampton
Newton
Oelwein
Osage.
13
24
3
10
4
17
13
5
3
12
9
8
3
5
8
4
14
6
2
9
6
11
14
1
18
5
5
8
21
17
16
8
6
13
5
25
5
8
3
10
17
13
4
4
26
8
6
6
23
6
8
25
5
4
8
8
J
11
29
7
6
11
16
3
7
32
6
15
9
9
4
3
KANSAS-Con.
Olathe
15
Osawatomie
Ottawa.. - ..
6
14
Paola
7
Parsons.
16
Mitchell
Monticello
Mooresville
Mount Vernon
Munster
New Castle
Phillipsburg
Pittsburg.. .. . ..
4
29
Plainville
Pratt
4
Osceola
11
Oskaloosa
Perry
Red Oak
Roeland Park
Russell
Shawnee
7
8
New Haven
Noblesville
North Manchester..
North Vernon
Peru
10
Rock Rapids
Sheldon
Valley Center
Wellington
Westwood-. .
3
14
Shenandoah
Sibley
5
Winfield
KENTUCKY
Bardstown
16
Plainfield
Spencer
Spirit Lake
Portage
Tama
Urbandale
Vinton. _
Portland
Benton
5
W^averly
Berea
7
Rockville
Webster City
West Burlington...
West Des Moines...
Windsor Heights....
Winterset
KANSAS
Abilene
Campbellsville
Cynthiana
7
Danville. .
Scottsburg
Sellersburg
Seymour
Shelbyville
21
Dawson Springs
ElizabethtowTi
Elsmere
Erlanger
4
13
2
10
5
Flatwoods
8
Valparaiso
Arkansas City
Atchison
Augusta
Belleville
Fort Thomas
Franklin
''.
Wabash
17
Harlan
West Lafayette
West Terre Haute..
Whiting
Beloit
Chanute
Harrodsburg
Hazard
9
13
Clay Center
Coffeyville
Henderson
Highland Heights. _
Hopkinsville
Jefferson town
Lancaster
35
1
Colbv
32
IOWA
Concordia _..
Council Grove
Derby
4
5
Albia
Ludlow..
7
Dodge City-
Middlesboro
Monticello
Mount Sterling
Paris
16
Anamosa
El Dorado
4
Ellinwood ...
10
Ellis
14
Belmond
Emporia
Park Hills
3
Russellville.-
10
Bloomfield
Fairway
Freclonia
Garden City
Garnett
Goodland .
St. Matthews
Somerset-
10
17
Centerville
Charles City
Clarinda
South Fort MitchelL
4
19
LOUISIANA
De Ridder ._
Clear Lake . .
Great Bend
Cresco
Herington
Hiawatha
De corah
11
Denison
Dyersville
Hoisington
Holton
Horton
Donaldsonville
Eunice..
16
19
Eldora
Franklin.. . .
17
FmiTipfshnrcr
Humboldt
Hammond . -
18
Estherville
Independence
lola
Junction City
Kingman
Haynesville... . ._
4
Jonesboro
9
Fairfield
Kaplan. .
8
9
Marksville
7
Grinnell
Leawood
Minden...
12
New Roads... ...
5
Harlan ,
Lindsborg
Opelousas
Plaquemine.
28
Independence
Indianola
Lyons
13
Manhattan
Rayne
17
Jefferson
Marysville
Springhill
9
Sulphur
8
Knoxville
Merriam
Thibodaux
23
Le Mars
Mission
Vivian
4
Welsh
6
Maquoketa
Oakley
West Monroe
26
165
Table 50. — Number of Fiill-Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
MAINE
Augusta
Bar Harbor
Bath
Brunswick
Camden
Dexter
Ellsworth
Falmouth
Farmington
Gardiner
Hallo well
Hampden
Houlton
Kittery
Madawaska
Madison
Millinocket
Milo
Old Orchard Beach
Old Town
Orono
Paris
Pittsfield
Presque Isle
Rockland
Rumford
Saco
Sanford
Scarborough
Skowhegan
South Portland
Van Buren
Waldoboro
Waterville
Wells
Westbrook
York
MARYLAND
Aberdeen
Annapolis
Bel Air
Bladensburg
Brimswick
Cambridge
Crisfield
District Heights
Easton
Elkton
Frederick
Frostburg
Greenbelt
Hyattsville
Laurel
Mount Rainier
Salisbury
Sparrows Point
Takoma Park
Thurmont
University of
Maryland
University Park
Westminster
MASSACHUSETTS
Abington
Acton
Acushnet
Adams
Agawam
Amesbury
Amherst
Andover
Ashburnham
Ashland
Number of
police
department
employees
5
26
8
3
13
7
37
11
15
18
12
6
37
201
24
City by state
MASSACHUSETTS-
Continued
Athol
Auburn
Ayer
Barnstable
Bedford
Blackstone
Bourne
Boylston
Bridge water
Burlington
Chatham
Chelmsford
Clinton
Cohasset
Concord
Dalton Town
Danvers
Dartmouth
Dighton
Dover
Dracut
East Bridge water._
Easthampton
East Longmeadow.
Easton
Fairhaven
Falmouth
Foxborough
Franklin
Gardner
George to^\Tl
Grafton
Greenfield
Groveland
Harwich
Hingham
Holbrook
Holliston
Hopedale
Hudson
Hull
Ipswich
Lancaster
Leicester
Lincoln
Littleton
Longmeadow
Ludlow
Lynnfield
Mansfield
Marblehead
Marion
Marlboro
Marshfield
Mattapoisett
Medfield
Merrimac
Middleboro
Milford
Millburv
Millis..:
Montague
Nahant Township,
Nantucket
Newburyport
North Adams
North Andover
Northboro
Northbridge
North Brookfield--
North Reading
Norwell
Orange
Oxford
Palmer
Pepperell
Number of
police
department
employees
City by state
MASSACHUSETTS-
Continued
Plymouth
Provincctown
Reading
Rehoboth
Rockport
Salisbury
Saugus
Scituate
Sharon
Shirley
Somerset
Southborough
Southbridge
South Hadley
Stoneham
Stoughton...
Stow
Sudbury
Swampscott
Swansea
Topsfield
Tyngsborough
Upton
Walpole
Ware
Ware ham
Wayland
Webster
West Boylston
West Bridgewater.
Westford
Weston
Westport
Whitman
Williamstown
Wilmington
Winchester
Winthrop
Wrentham
MICHIGAN
Adrian
Albion
Algonac
Alma
Alpena
Battle Creek Town-
ship
Bedford Townsliip..
Belding
Benton Harbor
Berkley
Berrien Springs
Bessemer
Beverly Hills
Big Rapids
Blissfield
Bloomfield To^\-n-
ship
Boyne City
Cadillac
Caro
Caspian
Center Line
Charlotte
Chelsea
Clawson
Coldwater
Corumia
Crystal Falls
Davison
Durand
Ecorse
Escanaba
Farmington
Number of
police
department
employees
166
Table 50. — Number of Fiill-Time Police Department Employees, December 31.
1965, Cities With Population under 25,000 — Continued
City by state
MICHIGAN— Con.
Fenton
Flat Rock
Gibraltar
Gladstone
Grand Haven
Grand Ledge
Grandville
Greenville
Grosse Pointe
Grosse Pointe
Farms
Grosse Pointe
Park
Grosse Pointe
Woods
Hancock
Harper Woods
Hastings
Hillsdale
Howell
Huntington Woods.
Iron Mountain
Iron River
Ironwood
Ishpeming
Lake Orion
Lapeer
Lathrup Village. --
Laurium
Ludington
Mackinac Island...
Manistee
Marine City
Marquette
Marshall
Marysville
Mason
Melvindale
Menominee
Michigan State
University
Milford
Mount Pleasant..-
Munising
Muskegon Heights
Negaunee
New Baltimore
Niles
North Muskegon _-
Northville
Norway
Oscoda
Otsego
Owosso
Oxford
Petoskey
Plain well
Pleasant Ridge
Plymouth
Portland
Richmond
River Rouge
Riverview
Rochester
Rogers City
Romeo
Roosevelt Park
St. Clair
St. Johns
St. Joseph.
St. Louis
Sault Ste. Marie...
Scottville
South Haven
South Range
Sparta
Stambaugh
Number of
police
department
employees
29
City by state
MICHIGAN— Con.
Sturgis
Swartz Creek
Tecumseh
Tliree Rivers
Trenton
Troy
Vassar
Wakefield
Wayne
Woodhaven
Ypsilanti
Zeeland
MINNESOTA
Albert Lea
Alexandria
Anoka
Aurora
Babbitt
Bayport
Bemidji
Benson
Blaine
Blue Earth
Brainerd
Breckenridge
Brooklyn Park
Burnsville
Cambridge
Chaska
Chisholni
Cloquet
Columbia Heigh ts.
Crookston
Crosby
Deephaven
Detroit Lakes
Ely
Eveleth
Fairmont
Falcon Heights
Faribault
Fergus Falls
Fridley
Glen wood
Golden Vahey
Grand Rapids
Hastings
Hibl)ing
Hopkins
Hoyt Lakes
Hutchinson
International Falls
Jackson
Lake City
Lauderdale
Le Sueur
Little Falls
Maplewood
Marshall
Mendota Heigh ts. -
Montevideo. _.
Morris
Mounds View
New Brighton
New Hope
New Prague
New Ulm
Northfleld
North Mankato...
North St. Paul
Orono
Ortonville
Owatonna
Park Rapids
Pipestone
Number of
police
department
employees
City by state
MINNESOTA— Con.
Plymouth
Red Wing
Redwood Falls
Rob])insdale
St. Anthony
St. James
St. Paul Park
St. Peter
Sauk Rapids
Shakopee
Silver Bay
Sleepy Eye
South St. Paul
Springfield
Staples
Stillwater
Tliief River Falls. -
Tracy
Two Harbors
Virginia
Wabasha
West St. Paul
White Bear Lake..
Willmar
Windom
Worthington
MISSISSIPPI
Aberdeen
Batesville
Booneville
Brookhaven
Cleveland
Clmton
Forest
Greenwood
Indianola
Long Beach
McComb
New Albany
Newton
Oxford
Senatobia
Waynesboro
MISSOURI
Ballwin
Bellefontaine
Neighbors
Berkeley
Boonville
Brentwood
Bridgeton
Brookfield
Cameron
Carthage
Centralia
Charleston
ChiUicothe
Clayton
Crest wood
Creve Coeur
Dellwood
De Soto
Eldon
Excelsior Springs..
Farmington
Fayette
Flat River
Frontenac
Fulton
Gladstone
Glendale
Hanley Hills
Hannibal
Number of
police
department
employees
167
Table 50.^ — Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
mSSOURI-Con.
Harrisonville
Hazelwood
Hermami
Jackson
Jennings
Ladue
Lamar
Lees Summit
Liberty
Maiden
Maplewood
Marceline
Marshall
Maryville
Mexico
Moberly
Monett
Neosho
Nevada
Normandy
North Kansas City
Northwoods
O'Fallon
Olivette
Palmyra
Pine Lawn
Potosi
Raytown
Richmond Heights
River view
Rock Hill
RoUa
St. Ann
St. Jolm Village
Salem
Shrewsbury
Sikeston
Slater
Trenton
Union
Valley Park
Vinita Park
Warrensburg
Webb City
West Plains
MONTANA
Anaconda-
Baker
Bozeman..
Choteau---
Conrad
Culbertson.
Dillon
Glasgow
Glendive--
Helena
Laurel
LewistOMTi.
Libby
Livingston.
Miles City-
Red Lodge-
Sidnev
Whitefish...
Wolf Point -
NEBRASKA
Alliance -
Auburn..
Aurora,-.
Beatrice -
Bellevue-
Blair
Chadron.
Number of
police
department
employees
City by state
NEBRASKA— Con.
Columbus
Crawford
Crete
Fairbury
Fremont
Gering
Hastings
Holdrege
Kearney
McCook
Millard
Nebraska City-
Norfolk
North Platte...
Plattsmouth...
Ralston
Schuyler
Scottsblufl
Seward
Sidney
Superior
Wayne
York
NEVADA
Boulder City.
C arson City.-
Elko
Fallon
Sparks
NEW HAMPSHIRE
Berlin
Claremont-.-
C on way
Derry
Durham
GoffstowTi
Hampton
Hanover
Hudson
Keene
Littleton
Milford
Ne^^^narket--
Newport
Pelham
Peterborough
Rochester
Salem
Somersworth .
NEW JERSEY
Absecon
Allendale
Asbury Park
Atlantic Highlands.
Audubon
Belvidere
Berkeley Heights^ -.
Bernards TowTiship.
Beverly
Bogota
Boonton
Bordentown
Bound Brook
Bradley Beach
Bridgeton
Brielle
Brigantine
Burlington
Butler
Caldwell
Cape May
Number of
police
department
employees
City by state
NEW JERSEY— Con.
Carlstadt
Carteret
Cedar Grove Town-
ship
Chatham To\\ti-
ship
Cinnaminson To^^^l
ship
Clark
Clayton
Cliffside Park
Closter
Collingswood
Cresskill
Deal
Delanco Township.
Demarest _ . .
Denville Township
Dover
Dumont
Dunellen
East Hanover
Township
East Paterson
East Rutherford..-.
Eatontown
Edge water
Egg Plarbor City...
Emerson
Englewood Cliffs...
Fairfield
Fair Haven
Fairview
Fanwood
Flemington
Florence Township.
Florham Park
Franklin
Freehold
Garwood
Glassboro
Glen Ridge
Glen Rock
Gloucester City
Green Brook
Township
Greenwich
Township
HackettstON\Ti
Haddonfield
Haddon Heights
Haddon To\\Tiship..
Hammonton
Hanover Township.
Harrington Park
Harrison
Hasljrouck Heights.
Haworth
Hawthorne
Highland Park
Highlands
Hillsdale
Hillside Township. -
Ho-Ho-Kus
Hopatcong
Jamcsburg
Jefferson Township.
Keansburg
Kenilworth
Kinnelon
Lake wood
Lawrence
Towmship
Lincoln Park
Lin wood
Little Ferry
Little Silver
Number of
police
department
employees
168
Table 50. — Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
NEW JERSEY— Con.
Lower Township
Lyndhurst
Township
Madison
Magnolia
Mahwah Township.
Manasquan
Mantoloking
Manville
Maple Shade
Township
Maplewood
Township
Margate City
Matawan
Maywood
Merchant ville
Metuchen
Middlesex
Midland Park
MilUiurn
Township
Milltown
Millville
Mine Hill
Township
Mont vale
Mont ville
Township
Moorestown
Township
Morristown
Morris Township.-.
Mountain Lakes —
M ountainside
Mount Ephraim —
Mount Holly
Neptune City
Netcong
New Milford
New Providence
New Shrewsbury. --
Newton
North Brunswick
Township
North Haledon
Northvale
North Wildwood...
Norwood
Oakland
Oaklyn
Ocean City
Ocean Grove
Ocean TowTiship..-.
Oradell
Palisades Interstate
Park
Palisades Park
Park Ridge
Passaic Township..
Paulsboro
Pemberton Town-
ship
Penns Grove
Pennsville Town-
ship
Pequannock Town-
ship
Phillipsburg
Pitman
Pleasantville
Point Pleasant
Point Pleasant
Beach
Pompton Lakes
Princeton Town-
ship
Number of
police
department
employees
City by state
NEW JERSEY— Con.
Prospect Park
Ramsey
Randolph Town-
ship
Red Bank
Ridgefield
Ridgefleld Park
River Edge
Riverside
Rochelle Park
Township
Rockaway
Rockaway Town-
ship
Roseland
Roselle
Roselle Park
Roxbury To^vnship.
Rumson
Runnemede
Rutherford
Saddle Brook
To\vnship
Scotch Plains
Sea Isle City
Secaucus
Shrewsbury
Somerdale
Somers Point
Somerville
South Amboy
South Brunswick
Township
South Orange
South Plainfield
South River
Sparta To\\Tiship - - -
Spotswood
Springfield
Spring Lake
Heights
Stratford
Summit
Tenafly
Toms River
Union Beach
Upper Penns Neck
Township
Upper Saddle
River
Ventnor City
Verona
Voorhees Township
Waldwick
Wallington
Wanaque
Washington
Washington Town-
ship
Watchung
Weehawken Town-
ship
West Caldwell
West Deptford
To\^^lship
West Long Branch.
West Paterson
Westwood
Wharton
Wildwood
Wildwood Crest
Willingboro Town-
ship
Woodbury
Woodcliff Lake
Woodlynne
Wood-Ridge
Number of
police
department
employees
City by state
NEW JERSEY— Con.
Wrightstown
Wyckoff
NEV; MEXICO
Artesia
Aztec
Belen
Clayton
Deming
Espanola
Eunice
Gallup
Jal
Las Vegas City
Los Alamos
Portales
Silver City
Truth or Conse-
quences
Tucumcari
Tularosa
University Park . . _
NEW YORK
Alfred
Altamont
Amity ville
Ardsley
Asharoken
Attica
Baldwins ville
Ballston Spa
Batavia
Bath
Beacon
Bethlehem
Blasdell
BriarclifT Manor.
Canajoharie
Canandaigua
Canastota
Canisteo
Canton
Carmel
Carthage
Cayuga Heights -
Cazenovia
Chester
Chittenango
Cobleskill
Cohoes
Cooperstown
Corinth
Corning
Cornwall
Cortland
Dans ville
Dewitt
Dobbs Ferry
Dolge ville
Dunkirk
East Aurora
Eastchester
Ellenville
Elmira Heights.
Elmsford
Endicott
Evans
Fairport
Falconer
Floral Park
Fort Edward
Fort Plain
Fredonia
Geneva
Number of
police
department
employees
169
Table 50. — Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
Nuniber of
police
department
employees
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
NEW YORK-Con.
Glens Falls
31
36
6
9
5
3
6
5
59
19
L?
17
1
5
3
24
10
21
12
13
17
30
19
28
10
5
15
13
26
5
11
5
4
51
7
15
20
45
23
9
44
3
18
17
23
1
18
17
5
15
2
6
23
32
20
23
39
32
14
1
3
75
5
39
14
26
13
33
17
15
16
38
30
NEW YORK-Con.
Rotterdam. .. .
24
47
3
3
12
11
29
8
53
12
2
2
6
1
12
13
3
4
25
2
16
6
20
9
2
8
11
6
7
5
3
5
6
7
12
9
6
3
2
3
1
9
26
24
6
4
3
11
3
5
8
5
29
7
5
14
35
5
26
10
6
9
12
5
10
10
3
24
18
28
1
18
10
26
NORTH
CAROLINA— Con.
Lexington .. .
Rve
33
Goshen
Sag Harbor .._ ._.
Lincolnton ....
13
Gnn vprnpnr
St. Johnsville
Salamanca
Louisburg
8
Lumberton
Marion
24
Granville
Saranac Lake
Saratoga Springs
Saugerties..
10
Green Island
Monroe
22
Greenport
Morganton
Mount Airy
21
Hamilton
Scarsdale
20
Scotia ...
Mount Ohve
Murfreesboro
New Bern
6
Hastings-on-
Hudson
Sherrill
7
Skaneateles
32
Sloan - .
Red Springs
Reidsville
5
Herkimer
Sloatsburg
31
Highland
Solvav
Roanoke Rapids
SaUsburv . _ _
28
Highland Fails
Hoosick Falls
Hornell . .
Southampton
South Glens Falls..
South Nyack
Spring Valley
Springville
44
Scotland Neck
Shelby
6
30
Smithfield.
15
Hudson
Sprav
6
Hudson Falls - ..
SufTern
Spring Lake
Statesville
3
Illon
Ticonderoga
Tuckahoe
44
Irvlngton
Tarboro
17
Johnson City
Johnstown
Tupper Lake
Tuxedo
Thomasville
Valdese
31
5
Tuxedo Park
Vestal .
Wadeslwro
11
Lake Placid
Wake Forest
Washington
6
Lakewood
Walden
20
Walton
Waynesville. .
13
Lancaster Village.. -
Larchmont
Wappingers Falls. ..
Warsaw
NORTH DAKOTA
Devils Lake
Dickinson
Le Roy - . .. .
Liberty
Waterloo
10
Watkins Glen
17
7
Lynbrook
Wellsville
Jamestown
20
Westfield
Mandan ... .. .
13
Whitehall
Rugby -
4
Malverne.
Whitesboro .. ..
South West Fargo...
Valley City
Williston
3
Mamaroneck ..
Woodburv. .. __ _.
11
Massena
Yorkville
18
Medina.
NORTH CAROLINA
Ahoskie
OHIO
Amberley... . .
Middleto^^^l
Mohawk
Monticello. -. .
14
8
New Castle
Asheboro
Ashland
19
New York Mills....
Aurora ..
7
North Castle
Beaufort
Avon Lake
12
North port
Belhaven
Barnes ville
5
North Syracuse...
Bay Village
15
Norwich
Blowing Rock
Beachwood
18
NundaTown. .. ..
Beavercreek
Township ..
7
Ogdensburg
Cary
Bedford
19
Olean
Chapel Hill
Bellaire
14
Oneida
Cherry ville
Bellefontaine
Belle vue -
17
Oneonta
Clayton
11
Ossining_ .. .
Clinton
Belpre.
4
Oswego
Berea _
22
Owego
Draper
Bexlev
20
Oxford
Elizabeth City
Elkin
Blue Ash
6
Painted Post
Bowling Green
Brecksville
17
Palisades Interstate
Enfield
14
Park
Broadview Heights.
Brooklyn
Brook Park.. _ _
7
Palmyra.. ... .
Forest City
14
Peekskill
Fuquay Springs
23
Pelham
Bryan.- _ _ .-. ...
12
Pelham Manor
Granite Falls
Havelock
Cambridge
20
Penn Yan
Campbell- .. .. ..
23
Plattsburgh
Henderson
Canfield
Carev
4
Pleasantville
Hendersonville
Jacksonville
Lake Waccamaw
5
Port Jervis
Cehna
Chagrin Falls
C harden.- .. .
13
Potsdam
8
Poughkeepsie
8
Town
Leaksville
Cheviot
8
Riverhead Town...
Lenoir _.- .... . .
Circleville
13
170
Table 50. — Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
OHIO— Continued
Clyde
8
2
4
16
4
2
9
18
17
4
19
16
25
4
6
12
5
22
23
11
25
10
17
9
7
4
6
7
13
2
8
6
10
14
3
4
8
9
9
8
10
14
16
13
12
3
3
13
9
5
5
5
7
21
7
17
7
16
5
18
4
8
4
5
4
14
7
5
11
2
11
5
4
8
5
16
8
OHIO— Continued
Niles
23
14
8
25
7
12
14
6
37
7
4
21
11
10
9
22
20
3
12
19
9
13
15
15
10
10
26
2
18
19
7
8
6
10
7
10
18
4
7
20
3
5
14
17
25
3
4
8
14
12
3
26
15
10
13
18
8
13
4
4
9
7
12
10
21
19
9
23
4
18
16
8
3
6
17
13
OHIO— Continued
Xenia
OKLAHOMA
Ada
28
North Canton
North College Hill..
North Olmsted
North Ridgeville...
North Royaltou
Norwalk
Columbiana
Coii^ieaut
Crestline
23
Bethany _.
18
Deer Park
Blackwell... .
15
Defiance
Oak Harbor
Oakwood
Broken Arrow
Checotah ...
12
Delaware
3
Oberlin
Cherokee
3
Chickasha. _
23
Eastlake
Oregon
Clare more... . ..
13
East Liverpool
Orrville
Cleveland
4
Ottowa Hills
Oxford
Collins ville
4
Tr.lnTivnnrl Plnpp
Gushing .
13
Del City
.18
Fairport Harbor
Parma Heights
Pflnlrbnc
Dewey
4
Drumright
7
Po'^tnria
Perrysburg
Duncan .. . .-
28
Edmond - -.
15
Frpmnnt
Port Clinton
El Reno -
19
Guthrie
14
Gallon
Reading
Healdton
3
Reynoldsburg
Richmond Heights.
Rittman
Lindsay . _.
6
Germantown
Gibsonburg
Madill
6
McAlester
28
Rocky River
Russell Township..
Miami- _ .
24
Golf Manor
Nichols Hills
Nowata ....
10
Grandyiew Heights.
5
Okmulgee
18
Greenfield
Pauls Valley
Pawhuska.- .
11
Greenhills
Seven Hills
12
Perry
6
Grnvp Citv
Sharonville
Puree 11
9
Hicksville
Sheffield Lake
Shelby
Sand Springs
Sapulpa ...--- -
15
Highland Heights...
Hilliard
19
Sidney
Tahlequah
13
Hillsboro
Silver Lake
Tecumseh
5
Tonkawa
5
Village
n
Independence
South Charleston...
Vinita
?
Warr Acres.-
8
Kent
Stow
Yukon - .
S
Strongsville .. ...
OREGON
Albany.-
Tiffin .- -.
Tipp City.. .- .
Trenton
27
Ashland..
U
Troy
Astoria
2(
Baker
16
Loveland
Union City
Beaverton
If
University Heights.
Bend
ic
Brookings
Marietta
Vandalia
Canby--
^
Marvsville
Van Wert
Central Point
Coos Bay... ... .-
f
2:
Mayfield
Wapakoneta
Washington Court
Coquille
c
Medina
Cottage Grove
Dallas
1^
Mentor-on-the-Lake
Mianiisburg
1
Wauseon
Forest Grove
Grants Pass
i:
Middleport
Waverly ..
1.
Mingo Junction
i
Wells ville
Hermiston .--
i
Montgomery
West Carrollton
Hillslioro
1^
Hood River
Moraine
Westlake
Klamath Falls
La Grande.--
3
Mount Gilead
Mount Healthy
Wickliffe
1'
Willard
Lake Oswego
Lebanon
r
Willoughby
1
Navarre
Willoughby Hills...
Willowick
Mill City
Milton-Free water--.
Milwaukie
1
Newburgh Heights .
Wilmington
Windham
2
Myrtle Point
Newberg
Newcomerstown
New Lexington
New Philadelphia. .
Newton Falls
Winters ville
I
Newport - .- -
Worthington
Wyoming
North Bend
Ontario
1
1
171
Table 50. — Number of Full-Tirne Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continvied
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
City by state
Numl)er of
police
department
employees
OREGON— Con.
24
9
6
10
23
7
2
12
8
20
8
8
5
8
9
18
3
12
4
7
3
3
10
5
9
1
18
2
12
3
7
1
4
24
17
15
10
7
35
15
2
2
6
15
4
22
8
24
5
3
11
2
2
9
18
3
12
10
12
2
1
5
2
2
2
7
2
13
9
14
19
23
PENNSYLVANIA—
Continued
East Deer Township.
East Lausdowne
East Stroudsburg.__
Easttown Town-
3
4
8
10
7
4
9
7
5
5
5
16
9
3
10
8
4
22
3
1
5
2
6
6
4
6
3
5
10
28
8
11
10
6
4
20
12
7
6
1
10
16
5
21
9
15
4
4
4
2
10
5
20
2
18
4
4
4
6
3
5
17
2
2
16
6
8
10
PENNSYLVANIA-
Continued
Lower Providence
Township
Lower Southampton
Township
Mahanoy City
Marcus Hook
Marple Township..
Marysville
6
Reedsport
17
St. Helens
9
Sandy
Seaside .. ...
East Whiteland
Township
Ebensburg
8
28
Silverton
6
The Dalles
Edsewood
McAdoo
3
Tillamook _
McCandless Town-
ship
Toledo
Edwardsville
Elizal)ethtown
Elizabeth Town-
ship
16
West Linn
McConnellsburg
McKees Rocks
McSherrystown
Meadville
1
19
1
PENNSYLVANIA
Ellwood City
23
Mechanicsburg
Media
5
Anil^ler
Emporium
12
Ambridge
Ephrata.
Meyersdale.
4
Etna
Milton .
9
Arnold
Exeter Towmship...
Farrell
Miners ville
5
Ashland
Monessen
21
Athens .
Monongahela
Montours ville
Morrisville _.- ..
12
Baldwin Towniship
Fleetwood
2
Barnesboro
Ford Citv . .
10
Beaver
Forest Citv
Mount Penn
Mount Pleasant
Mount Union
Muhlenberg Town-
ship
4
Bedford
Fortv Fort
11
Bellefonte
Fountain Hill
Frackville
4
Belle Vernon ... _ _
Bellevue
Franklin Township.
Freeland
7
Bentleyville
Munhall
25
Berwick
Gallitzin
2
Birdsboro
Glassport
Nanticoke
13
Bloomsburg. „ __
Greensburg
Nether Providence
Township
New Brighton
New Cumberland- _
New Eagle
Borough Township.
Green Tree
10
Boyertown
Greenville
8
Bradford
Grove City
7
Brentwood . _..
Hamburg
2
Bristol
Hampden Town-
ship
New Holland
New Kensington
North Belle Vernon.
North Catasauqua..
North East
North Sewickley
Township
North Versailles
Township
Oil City
9
Brownsville
32
Burnham-Derry
Hanover . .
2
Township.. .. .
Hatboro . ....
3
Butler
4
Butler Township...
Honesdale _
Cain Township
Cambridge Springs .
CampHiU .
Hummelstown
Huntingdon
Indiana
2
14
Carnegie.
Ingram . .
24
Center Township __
Jeannette
Oly pliant
6
Chambersburg
Jefferson
Palmer Township..
PalmjTa
6
Churchill
Jenkintown
6
Clairton .
Jersey Shore
Jim Thorpe _. .
Penbrook
3
Clarion
Penn Township
(Westmoreland
C larks Summit
Clearfield
Johnsonbiu-g
5
Clymer ..
Coaldale. ..
Kennedy Town-
ship
Kennett Square
Kingston
Kulpmont
Lansdale
Lansford
Lawrence Park
Township
Penn Township
(York County)-..
Pitcairn
2
Columbia ... _ _
3
Connellsville
Coplav ..
Pleasant Hills
Plymouth
16
12
Coraopohs
Portage
Corry
Port Allegany
Port Carbon
Pottsville - -
9
Coudersport
Crafton
29
Cresson
Prospect Park
Punxsutawney
Quakertown
Republic
Reserve Township..
Reynoldsville
Richland Town-
ship
5
Cressona
Lehighton
12
Cumru Township. .
Curwensville
Dale. ..
Lemojme
Lewisbuig
Lewistown
Liaonier _. _
9
2
3
Dallasto-\vn .
3
Danville
LittlestowTi
Lock Haven
Lower Allen Town-
ship
Lower Burrell
Lower Moreland
Township
Derrv
5
Donora
8
Doylestown
Rockledge
1
Du Bois
Rosslyn Farms
Borough
Dunmore __
1
Duquesne
Royersford
4
172
Table 50. — Number of Full-Time Police Department Employees, December 31.
1965 f Cities With Population under 25,000 — Continued
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
City by state
Numlier of
police
department
employees
PENNSYLVANIA-
Continued
5
2
4
32
8
7
5
5
3
2
8
2
2
3
1
1
1
4
8
26
12
6
' 13
14
9
2
3
12
7
9
4
1
10
3
19
8
3
35
7
20
8
33
23
2
11
9
6
3
31
2
4
21
8
14
1
5
2
7
10
PENNSYLVANIA—
Continued
West Reading
West View
6
8
17
16
18
7
6
2
6
5
5
3
2
11
18
9
19
21
6
25
13
5
24
16
15
30
6
11
21
29
6
16
12
21
13
18
19
20
37
19
14
23
13
18
10
34
3
10
7
17
3
5
8
18
5
12
18
4
10
10
16
TENNESSEE
Alcoa
12
St. Marys. .
Bristol
Clarksville
25
Salisbury Town-
43
ship . ...
Whitehall
Whitehall Town-
ship
Clinton
8
Selinsgrove. . .
Columbia.
26
Sharon
Dyersliurg
23
Sharon Hill
Whitemarsh Town-
ship
Whitpain Town-
ship
Wilkins Township..
Wilhamstown
Wilhstown Town-
ship
Wilson Borough
Windber
Winton Boro
Wyoming
Wyomissing
Yeadon..
Etowah
6
Sharpsburg. ._
Greeneville
24
S harps ville ..
La FoUette
5
Shillington
Lebanon...
19
Slatington. ..
10
Slippery Rock
Somerset .
Lexington
10
17
South Greensburg..
South Lebanon
Township
Southmont
Millington
14
Murfreesboro
Norris
Paris
30
1
15
Southwest Greens-
burg
Red Bank-White
Oak
8
Spangler
6
Speers Boro
Spring City
Zelienople
RHODE ISLAND
Barrington
Bristol
Savannah
ShelbyviUe
10
20
Springdale
Springettsbury
Signal Mountain
Springfield... -
17
15
Township
Sweetwater
7
Springiield Town-
Union City.
18
ship
TEXAS
Alamo Heights
Alpine
Spring Garden
Township
Spring Township. -.
Steelton
Burrillville
Cumberland
East Greenwich
Jamestown
15
4
Stowe Township
Johnston
Lincoln
Narragansett
North Kingstown . .
North Smithfield...
Portsmouth
Andrews
10
Stroudsburg
Sugar Notch
Aransas Pass
Athens .
11
13
Summit Hill
Atlanta
4
Sunbury..
7
Swarthmore
Belton
8
Tamaqua. .
South Kingstown. __
West Warwick
SOUTH CAROLINA
Andrews
Borger.
24
Taylor
Brady
Telford . ..
Brown wood
Canadian
Carrollton
24
Titusville
3
TrafEord.
14
Turtle Creek
Carthage
9
Tyrone.. ..
Castle Hills
6
Union City
Bennetts ville
Camden
Cisco
6
Uniontown
Cleburne
CockrellHill
Coleman
18
Upper Chichester
Chester. .
6
Township .
7
Upper Dubhn
Darlington .
College Station
Comanche
7
Township
4
Upper Gwynedd
Conroe ... __ ..
17
Township...
Greer
Corsicana. ...
28
Upper Merlon
Crockett
5
Township
Laurens
Daingerfield
Dalhart
Deer Park . .
4
Upper Moreland
Marion.
5
Township.. ._
Newberry
North Augusta
13
Upper Saucon
Township
Denver City
Dimmitt
Donna
Dublin
7
3
Upper Southamp-
ton Township
Travelers Rest
Winnsboro
SOUTH DAKOTA
Belle Fourche
Brookings ...
6
3
Vandergrift. . .
13
Verona
Versailles.. ...
Duncan ville
Eagle Pass ..
10
14
Washington
Eastland
Edinburg
Electra
5
Weatherly
16
Wellsboro
8
West Chester
Canton
Ennis
10
West Goshen
Chamberlain
Hot Springs
Huron
Lead
Madison
Mitchell
13
Township
West Homestead .
Farmers Branch....
25
15
West Lampeter
Gainesville
20
Township
Westmont Borough.
West Newton
Georgetown
Giddings
6
1
Sisseton
Gilmer
8
Spearfish
5
Township
Vermillion
Graham
13
West Pittston
Watertown
Grapevine
5
173
Table 50. — Number of Full -Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
City by state
Number of
police
department
employees
TEXAS— Continued
Greenville
22
6
15
14
26
11
22
"3
4
14
15
11
17
7
7
17
8
2
25
5
24
8
9
5
14
9
7
17
8
16
15
6
3
15
28
12
35
13
10
8
9
4
19
8
10
2
12
12
9
9
1?
5
10
21
2
14
4
12
17
17
14
13
12
3
4
6
14
4
6
5
1
20
3
UTAH— Continued
Roy
9
5
1
5
4
13
6
17
6
9
1
3
3
9
7
1
2
11
8
6
8
10
6
13
9
25
14
5
3
10
17
14
29
15
20
26
14
13
39
10
4
15
17
18
30
9
10
17
33
27
"9
24
28
4
9
17
10
3
7
3
2
4
WASHINGTON—
Continued
College Place
Colville
llearne
St. George.--
6
5
South Ogden
Sunset
Des Moines
4
Highland Park
Hillsboro
Edmonds
25
Tooele
Ellensburg
14
Vernal. - .-.
Enumclaw
10
VERMONT
Brattleboro
Ephrata .
11
Iowa Park
Fircrest
9
Jacinto City
Kerniit
Hoquiam.
15
IC prrvillp
Essex Junction
Hartford. -
Kelso
16
Kilgore
Kennewick
20
Lake Jackson
Lake Worth
A'lanchester
Kent
17
Manchester Center.
Middlebury
Montpelier
13
L\aiden--.
3
Lewis ville
L%'nnwood- .
15
Newport. . . . .
Marvsville.--
6
Lufkin
Northfield.- .
Mercer Island
Moses Lake .. .
15
A^TcOrpcrnr
Randolph
18
St. Albans-- ..
Mountlake Terrace.
M ou nt \'e rn on
Oak Harbor
Pasco -
16
South Burlington...
Windsor _
11
Mexia
S
Winooskl
21
VIRGINIA
Port Angeles
Port Orchard
Port To\TOsend
19
Mount Pleasant
Muleshoe
10
6
16
AltaVista
Puvallup .. -
19
N^pw Rrnnnfpls
Bedford
Ravmond
6
North Richland
Big Stone Gap
Bristol
Renton
41
Hills
Selah
3
Olmos Park
Buena Vista
Chase Citv
12
Palacios
Snohomish
9
Palestine
Chincoteague
Christ iansburg
Clifton Forge
Covington
Franklin
Fredericksburg
Front Royal
Harrisonburg
Hopewell .
Sunnvside.
10
Paris
Toppenish
12
Pecos
Town of Mercer
Island
Plainview
3
Piano
Tumwater..
9
Ravmondville
Refuslo
4
Wenatchee
32
Richland Hills
WEST VIRGINIA
Benwood
RobstowTi
Lexington. -
Rockdale
Luray
3
Manassas
Marion
Blue field
22
Rusk
Bridgeport
3
San Benito
Martinsville
Charles Town
Chester
7
2
Seminole
Poquoson
Pulaski
Dunbar
9
Slaton
Follansbee
6
South Houston ...
Radford
Hint on
6
Stamford
Salem
Saltville
Kevser
12
Stephenville.-
3
Sweetwater---
South Boston
Suffolk
Martinsburg
AIcMechen
16
Taft. .-.
3
Terrell
Vinton
Morgantown
Nitro
27
Tuha
6
Uvalde
Wa^Tiesboro
Williamsburg
Point Pleasant
Ravens wood
Riplev
6
Vernon.
7
Waxahachie -.. -
4
Weather ford
WASHINGTON
Aberdeen
Spencer
3
Weslaco.. ..
Vienna
5
White Settlement...
Winters
Williamstown
WISCONSIN
Algoma
Aiitigo
4
Yoakum
Anacortes
Auburn. . .
UTAH
Belle vue. . ..
5
Burlington
14
American Fork.. ..
Camas
Ashland
Bayside
Beaver Dam
Berlm
Black River Falls--
Burlington
14
Bountiful.
Centralia
11
Helper
Chehalis
20
Midvale
Cheney
g
Moab
4
North Ogden ..
Cle Elum
15
orem .
Clyde Hill To^\Ti...
Colfax
10
Park City
Chilton
3
174
Table 50. — Number of Full- Time Police Department Employees, December 31,
1965, Cities With Population under 25,000 — Continued
City by state
Number of
police
department
employees
City by state
Nmnber of
police
department
employees
City by state
Numl^er of
police
department
employees
WISCONSIN— Con.
Chippewa Falls
Clinton ville
21
8
4
3
28
3
6
9
7
20
13
25
6
13
15
10
9
4
6
4
7
13
3
4
4
13
3
4
4
18
25
4
28
23
WISCONSIN— Con.
Menomonie
Mequon
14
13
16
7
11
15
35
5
3
5
23
12
2
4
10
7
10
6
10
15
11
8
8
6
12
3
9
4
10
6
27
29
10
5
WISCONSIN-Con.
Stevens Point
Stoughton
Sturgeon Bay
28
11
Columbus
MerriU
Middleton.
9
Cornell..
5
Cudahy
Monona
Tom ah
9
Dodge ville
Monroe .
Two Rivers
Viroqua
Water ford
23
Elkhorn
Elm Grove . .
Neenah
Nekoosa ,.. ._
4
3
New Holstein
New Richmond
Oak Creek
Watertown
Waupaca _
20
Fox Point
8
Waupun
West Bend
10
Glen dale
Oconomowoc
Onalaska
Peshtigo
Platte ville
17
West Milwaukee...
White fish Bay
Whitewater
24
Green dale
27
Greenfield
13
Wisconsin Rapids. ._
WYOMING
Buffalo
31
Hartford
Port Washington...
Prairie du Chien
Reedsburg
Rhinelander
Rice Lake
Hudson
5
Jefferson
Evanston
Gillette
Green River
Lander
Laramie
5
Richland Center
Ripon
River Falls
River Hills
14
Kewaunee
6
Kiel
13
Kimberly
25
Lake Geneva
Rothschild
Newcastle
9
Lake Mills
St. Francis
Schofiold
Powell -
11
Lancaster
Rawlins
10
Little Chute
Shawano
Sheboygan Falls
15
Rock Springs
18
Marshfield
16
Mayville
South Milwaukee- --
Thermopolis
Torrington
Worland
9
10
Menomonce Falls
Spooner
13
176
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population
City
Cities over 250,000 in
population
Akron, Ohio
Albuquerque, N. Mex.
Atlanta, Ga
Baltimore, Md.i
Birmingham, Ala
Boston, Mass
Buffalo, N.Y
Chicago, 111
Cincinnati, Ohio.
Cleveland, Ohio..
Columbus, Ohio-
Dallas, Tex
Dayton, Ohio
Denver, Colo
Detroit, Mich
El Paso, Tex
Fort Worth, Tex..
Honolulu, Hawaii -
Houston. Tex
Indianapolis. Ind..
Jersey City, N.J
Kansas City, Mo
Long Beach, Calif
Los Angeles, Calif
Louisville, Ky
Memphis, Tenn...
Miami, Fla
Milwaukee, Wis...
Minneapolis, Mmn.
Nashville, Tenn...
Newark, N.J
New Orleans, La.
New York, N.Y.
Norfolk, Va
Oakland, Calif...
Oklahoma City, Okla.
Omaha, Nebr
Philadelphia, Pa
Phoenix, Ariz
Pittsburgh, Pa
Portland, Oreg
Rochester, N.Y...
Sacramento, Calif.
St. Louis, Mo
St. Paul, Minn... .
San Antonio, Tex...
San Diego, Calif
San Francisco, Calif.
San Jose, Calif
Seattle, Wash
Tampa, Fla
Toledo, Ohio
Tucson. Ariz
Tulsa, Okla
Washington, D.C.
Wichita, Kans
Index
total
5,846
5,646
13, 529
26. 193
8,746
22, 542
9.833
103, 343
6.076
16, 697
10, 920
15, 830
5,543
13. 688
48, 599
5,243
7,172
9. 281
25. 238
13. 555
3.582
16. 866
11. 550
121. 359
11. 323
12. 295
13. 903
10, 361
14. 657
8,796
19,706
16. 621
187. 795
7,128
11, 647
7.125
5.752
33. 113
14. 752
18. 495
10, 454
4,988
8,848
25, 750
8,905
15, 222
10. 251
26, 924
6,066
11, 826
8,753
7, 427
4,379
5,917
25,462
4,747
Crhninal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
14
13
100
131
56
57
16
395
41
108
31
116
27
37
188
14
71
18
249
52
41
46
27
23
55
631
24
32
27
16
205
30
40
14
12
23
138
7
53
26
57
10
24
26
20
10
12
148
Man-
slaugh-
ter by
negli-
gence
17
20
44
66
28
43
1
209
37
23
28
90
9
15
33
41
14
199
21
32
18
25
67
32
50
28
25
39
19
125
42
41
40
Forci-
ble
rape
31
40
115
260
44
50
1,223
122
149
77
137
51
32
70
6
121
143
16
209
113
L268
52
63
70
33
49
58
162
119
1,154
50
64
28
535
110
152
58
44
76
323
Rob-
bery
417
2,109
1.109
381
14. 888
317
1,832
517
592
343
757
5,498
164
392
103
1.434
1.051
121
1,212
719
8.016
633
344
1,136
214
924
280
1,515
1.065
8.904
314
795
253
2.893
490
1,373
573
187
434
2. 293
362
336
367
2,087
116
516
525
487
135
183
2,881
122
Aggra-
vated
assault
124
535
903
3.830
793
930
418
10. 382
651
1,288
529
1,320
424
547
3.728
360
388
190
2. 314
618
184
1,180
505
9.211
477
481
1,647
477
603
807
1,991
979
16, 325
911
580
371
30
4,408
766
1,108
282
196
221
2,256
378
1,380
479
1,830
115
394
718
3G7
236
335
2,635
261
Bur-
glary—
break-
ing or
enter-
ing
2. 212
3.127
4. 820
7,393
3.741
4,681
3.899
30, 020
2.451
7,374
5,130
7,715
2.595
5.861
18, 460
2,927
3.955
4.652
12.860
5.691
955
7.219
4.939
50. 771
4.138
6,248
6.460
2.433
6.855
4,020
7,924
5,798
51. 072
2.882
5, 141
3.773
2,711
12.318
6.273
6,001
4,018
2,400
3.522
12. 661
4,170
7,161
3,165
11,535
3,327
4,965
4,305
3,096
2,054
2.270
2,271
Larcenv
theft
$50
and
over
4.200
7.053
2.644
2.775
2.359
17. 380
1.656
1, 025
2,725
2,256
989
3. 207
7.416
813
959
2.171
4.380
2. 474
137
3.921
2. 753
29, 708
3.864
3,613
3,167
3,841
3,418
1,802
3,548
3,953
74, 983
1,748
2,773
556
1,130
4,755
4. 727
3,833
3,752
1,356
2,716
2,533
1,940
4,165
4,372
3,975
1.016
3,938
2,197
2,311
1,092
1.929
4,153
1,238
Under
$50
4.444
6.057
8. 168
10. 383
4,316
3,450
4.143
51. 178
7. 027
11,993
6.110
18. 712
5.038
7,554
25. 083
9.397
5.673
13. 066
8.191
358
10. 559
4. 522
42. 600
4.757
4,912
6,177
9.490
8.645
2.099
5.372
5.331
40, 799
5, 196
8,080
6,590
6.389
15. 085
10. 802
4.169
7,685
4,684
5,661
27, 736
4,748
10. 461
9, 222
17, 663
10. 461
8,601
5,533
7,851
6.632
4. 182
8,423
6,268
176
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 100,000 to 250,000
in population
Albany, N.Y...
Alexandria, Va.
Allentown, Pa.
Amarillo, Tex..
Anaheim, Calif.
Arlington, Va
Austin, Tex
Baton Rouge, La.
Beaumont, Tex..
Berkeley, Calif.-.
Bridgeport, Conn_._
Camden, N.J
Canton, Ohio
Cedar Rapids, Iowa-
Charlotte, N.C
Chattanooga, Tenn..
Columbia, S.C
Columbus, Ga
Corpus Christi, Tex.
Dearborn, Mich
Des Moines. lowa.
Duluth, Minn
Elizabeth, N.J
Erie, Ba
Evansville, Ind
Flint, Mich
Fort Lauderdale. Fla.
Fort Wayne, Ind
Fresno, Calif
Garden Grove, Calif..
Gary, Ind .
Glendale, Calif
Grand Rapids, Mich.
Greensboro, N.C
Hammond, Ind
Hampton, Va
Hartford, Conn
Huntsville, Ala
Independence. Mo,
Jackson, Miss
Jacksonville, Fla, . .
Kansas City, Kans.
Knoxville, Tenn
Lansing, Mich
Las Vegas, Nev
Lincoln, Nebr
Little Rock, Ark.
Lubbock, Tex
Macon, Ga
Madison, Wis
Mobile, Ala
Montgomery, Ala.'...
New Bedford, Mass...
New Haven, Conn...
Newport News, Va...
Index
total
1,901
2,210
1,077
2,538
3,901
2,819
3,614
4,076
1,594
2,855
3,327
2,924
1,805
838
5,691
3,020
2,488
2,184
4,750
2,251
3,207
1,407
2,806
1,693
3,477
7,013
3,748
2,846
5,848
3,040
5,734
2.596
3.330
2,838
2,362
1,529
3,942
3,349
1.393
1,568
6,627
3,167
2,783
3,141
2,417
1,434
3,672
3,072
2, 741
1,576
5,135
2,641
2,366
2,735
2,389
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
Forci-
ble
rape
Rob-
bery
35
63
87
54
105
98
31
165
78
228
66
16
271
94
53
47
121
106
97
38
170
101
93
317
135
129
189
67
558
80
143
58
36
145
40
37
32
622
143
65
42
128
152
50
132
75
38
19
179
Aggra-
vated
assault
82
311
25
184
87
161
476
144
290
74
125
54
21
729
148
171
43
509
32
28
24
247
55
175
1,296
296
155
122
87
573
38
115
928
132
52
257
602
95
143
419
370
264
99
132
83
379
221
272
14
340
69
109
141
254
Bur-
glary—
break-
ing or
enter-
ing
757
850
445
1,063
2,056
1,007
1,860
1, 824
889
1,659
1,584
1,373
738
287
2, 577
1,585
1,082
939
1,912
723
1,344
665
1,390
699
1,577
2,140
1,907
927
2,155
1,502
1,728
1,111
1,355
672
702
1,910
1,032
671
845
3,221
1,512
1,453
1,163
781
544
1,293
1,391
1,350
533
2,985
1,169
1,096
1,037
1.101
Larceny-
theft
$50
and
over
323
626
429
932
1,182
1,208
571
1,597
197
523
626
503
602
302
1,414
322
751
588
1,702
850
1,200
403
365
341
1,131
2,332
1,030
1,184
2,102
984
1,570
848
1,032
771
840
575
814
1,179
,659
574
520
,163
871
656
439
106
664
704
884
475
539
650
Under
$50
351
1,720
981
2,303
2,755
2,391
5,259
3,649
1,657
4,009
1,392
1,229
1,547
1,555
2,762
1,205
1,863
1,233
2,576
3,320
3,096
1.570
1,485
1,446
2,207
3,799
2,670
3, 018
4, 457
1,70ft
2,439
1,776
2,538
1,844
1,510
1,098
3,038
1,757
1,297
1,877
4,339
1,991
1,823
2,769
1,857
2,755
2,949
2,492
1,701
2,504
1, 925
1,935
1,104
2, 022
1,788
' Figures not comparable with prior years.
221-746 — ee-
ls
177
Table 51. — Number of Offenses Known to the Police > 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 100,000 to 250,000
in population— Con.
Niagara Falls, N.Y
Orlando, Fla
Pasadena, Calif
Paterson, N.J
Peoria, 111
Portsmouth, Va
Providence, R.I
Raleigh, N.C
Reading, Pa
Richmond , Va
Riverside, Calif
Roanoke, Va
Rockford, 111
Saginaw, Mich
St. Petersburg, Fla
Salt Lake City, Utah.
San Bernardino, Calif.
Santa Ana, Calif
Savannah, Ga
Scranton, Pa
Shreveport, La
South Bend, Ind
Spokane, Wash
Springfield, Mass
Springfield, Mo
Stamford, Conn
Syracuse, N.Y
Tacoma, Wash
Topeka, Kans
Torrance, Calif
Trenton, N.J
Utica, N.Y
Virginia Beach. Va
Waco, Tex
Warren, Mich
Waterbury, Conn
"Wichita Falls, Tex
"Winston-Salem, N.C-_
Worcester, Mass
Yonkers. N.Y
Youngstown, Ohio
Cities 50,000 to 100,000
in population
Abilene, Tex
Abington Township,
Pa _[._
Alameda, Calif
Albany, Ga
Alhambra, Calif
Altoona, Pa. .. ...
Amherst, N.Y
Ann Arbor, Mich
Appleton, Wis
ArUngton, Mass
Index
total
1.618
2.644
3.425
2,699
3,215
2,901
5,502
2,610
1,007
6,511
3,857
1,872
1,598
2,012
4,508
5,510
3,499
2,564
3,185
949
2,775
1,725
1,790
1,725
1,134
1,752
5.238
2,313
1.537
4,289
2, 590
1,569
1,159
2,797
3,194
3,399
2, 354
1, 435
515
568
503
1,277
522
653
1,490
350
295
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh
ter
Man-
slaugh-
ter by
negli-
gence
30
Forci-
ble
rape
Rob-
bery
82
116
117
176
138
190
124
59
30
277
78
61
64
135
183
158
103
89
155
16
127
58
27
17
35
29
228
62
47
91
192
20
36
56
28
39
48
101
82
Aggra-
vated
assault
251
193
172
134
203
177
245
439
38
537
176
136
39
325
710
133
112
126
506
46
543
61
50
13
29
73
395
117
160
85
208
209
57
182
745
50
166
260
Bur-
glary—
break-
ing or
enter-
ing
Larceny-
theft
$50
and
over
500
1,010
1,548
1,200
1,408
1,268
2,169
996
523
2,742
795
716
2,211
2,379
1,510
1,356
1,306
424
1,121
789
826
414
662
1,901
1,150
808
2,001
1,357
339
837
1,749
1,061
668
428
1,056
1,456
1.319
921
207
244
296
562
329
344
346
171
170
600
906
1,032
284
753
1,028
771
200
1,450
1,174
514
474
357
1,073
1,996
1,239
471
811
183
529
438
410
325
269
415
1,949
582
324
1,442
382
143
723
456
1,041
365
345
516
474
1,115
484
213
162
41
455
31
205
856
91
59
Under
$50
1,213
1,483
3,029
1,083
2,199
1,615
3,019
1,654
815
4,366
2,734
1,317
1,693
2,
4,
4,
2,
2,
1.
453
210
,565
,256
,773
,383
860
3,085
2,785
3,641
1,299
1,777
339
3,468
2,409
2,220
2,079
130
975
1,676
2,127
2,221
1,883
1.601
1, 752
2,029
1,773
300
934
62
34
448
1,822
1,119
106
178
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 50,000 to 100,000
in population— Con.
Arlington, Tex
Asheville, N.C
Atlantic City, N.J..._
Augusta, Ga
Aurora, Colo
Aurora, 111
Bakersfield, Calif
Bay City, Mich
Bayonne, N.J
Berwyn, 111
Bethlehem, Pa
Billings. Mont
Binghamton, N.Y
Bloomfield, N.J
Bloomington, Minn..
Boise, Idaho
Boulder, Colo
Bristol, Conn.,
Bristol Township,
Pa
Brockton, Mass
Brookline, Mass
Brownsville, Tex
Buena Park, Calif
Burbank, Calif
Cambridge, Mass
Champaign, 111
Charleston, S.C
Charleston, W. Va
Cheektowaga, N.Y.._
Chesapeake, Va
Chester, Pa
Chicopee, Mass
Chula Vista, CaUf
Cicero, 111
Cleveland Heights,
Ohio
Clifton, N.J
Colonic Town, N.Y.-
Colorado Springs,
Colo
Compton, Calif
Concord, Calif
Costa Mesa, Calif
Council Bluffs, Iowa-
Covington, Ky
Cranston, R.I
Cuyahoga Falls, Ohio
Daly City, Calif
Davenport, Iowa
Daytona Beach, Fla..
Dearborn Heights,
Mich
Decatur, 111
Index
total
1,098
1,143
2,917
841
817
784
1,940
620
819
587
815
1, 106
728
552
524
960
647
357
1,583
1,645
801
1, 069
2,022
3,541
726
2,268
1,393
532
1,147
2,120
377
815
857
397
551
591
1,198
5,158
1, 294
1,197
1,218
344
1,119
1,675
1,543
892
1,357
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
2"
2
1
1
1
3
4
1
8
1
3
1
4
2
1
2
--"2
---
6
1
4
3
Forci-
ble
rape
Rob-
bery
27
90
44
5
35
140
4
15
43
30
303
15
24
25
39
Aggra-
vated
assault
55
79
61
185
17
42
48
21
132
10
45
22
14
3
11
28
11
16
39
8
57
28
53
57
58
79
136
4
146
277
18
65
22
20
26
58
410
23
13
50
42
2
26
34
122
36
22
Bur-
gl ary—
break-
ing or
enter-
ing
254
370
1,500
290
385
251
675
257
240
263
332
478
379
260
140
285
101
161
367
708
849
452
558
881
953
274
897
517
235
525
498
111
411
297
196
294
286
571
1,978
615
906
416
543
536
129
334
673
817
Larceny-
theft
$50
and
over
656
469
766
133
284
260
836
142
212
174
252
398
222
182
277
516
462
137
142
415
329
172
243
599
742
220
847
467
200
305
191
152
286
170
100
295
,068
474
522
327
323
465
155
332
483
304
262
392
Under
$50
141
750
754
2,373
1,066
323
163
835
1,424
701
272
482
1,096
1,074
320
478
958
916
922
971
1.303
663
822
1,997
953
799
521
476
105
855
400
453
476
363
1,456
2, 264
1,407
1,212
830
863
710
605
612
2,178
1,374
1,018
1,363
179
Table 51. — Number of Offenses Knoivn to the Police^ 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 50,000 to 100,000
in population—Con.
Des Plaines, 111
Downey, Calif
Dubuque, Iowa...
Durham, N.C
East Chicago, Ind.
East Orange, NJ-.
East St. Louis, 111.
Edison, N.J
Elgin, 111
Elyria, Ohio
Euclid, Ohio...
Eugene, Oreg
Evanston, 111...
Everett. Wash..
Fairfield, Conn.
Fall River, Mass
Fayetteville, N.C__.
Florissant, Mo
Fort Smith. Ark
Framingham, Mass.
Fremont, Calif..
Fullerton, Calif.
Gadsden, Ala...
Galveston, Te.x.
Garland, Tex...
Great Falls, Mont.
Greece, N.Y
Green Bay, Wis...
Greenville, S.C
Greenwich, Conn..
Hamilton Township,
N.J
Hamilton, Ohio
Harrisburg, Pa
Haverford Township,
Pa
Hayward, Calif
Hialeah, F]a
High Point, N.C.
Hollywood, Fla...
Holyoke, Mass
Huntington, W. V;
Huntington Beach,
Calif
Inglewood, Calif...
Irondequoit, N.Y_.
Irving, Tex—
Irvington, N.J
Joliet, 111
Kalamazoo, Mich.
Kenosha, "Wis
Kettering, Ohio...
Lafayette, La
Index
total
442
2,639
396
1,226
1,396
1,687
2,046
704
463
289
295
1,456
991
747
725
1,857
1,217
498
1,045
1,358
928
2,477
1,038
1,246
393
431
2,302
279
833
1,082
1,123
300
2, 050
803
1,774
703
1,700
1,335
3,289
308
1,251
848
1,315
1,696
694
391
921
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
2
2
5
12
2
4
1
3
1
1
10
11
3
9
1
1
7
1
1
1
4
7
6
5
5
3
1
1
2
5
7
2
13
2
2
1
1
4
1
1
1
3
Forci-
ble
rape
Rob-
bery
57
18
134
1
10
30
12
Aggra-
vated
assault
373
194
40
149
8
30
5
10
12
103
25
8
55
293
9
13
8
53
28
82
599
66
39
36
8
162
4
11
144
32
1
91
61
35
127
27
325
60
118
1
25
Bur-
glarj' —
break-
ing or
enter-
ing
167
1,094
101
404
323
689
625
266
163
115
117
416
375
374
307
900
617
156
266
152
477
528
414
662
482
594
182
134
1,059
135
334
297
568
144
825
813
423
762
302
574
1, 242
232
511
387
474
737
276
162
460
Larcenv-
theft
$50
and
over
163
057
160
227
385
512
395
282
172
83
45
770
238
182
234
311
36
152
147
227
348
603
295
743
376
344
140
189
687
91
296
483
297
97
784
200
605
211
371
546
,163
58
499
166
480
549
182
135
258
Under
$50
561
1,174
841
564
639
752
358
177
414
234
603
1,473
1,608
1,440
494
386
1,002
424
405
397
1,701
1,447
622
1,155
855
1,209
337
569
1,012
236
1,202
663
317
1,602
1,783
435
1,468
643
1,211
1,252
1,203
500
1,347
627
1,011
2,220
940
883
543
180
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 50,000 to 100,000
in population— Con.
Lake Charles, La
Lakewood, Ohio
Lancaster, Pa
Laredo, Tex
Lawrence, Mass
Lawton, Okla
Lexington, Ky
Lima, Ohio
Lincohi Park, Mich._
Livonia, Mich
Lorain, Ohio
Lowell. Mass
Lower Merion Town-
ship, Pa
Lynchburg, Va
Lynn, Mass
Maiden, Mass
Manchester, N.H
Mansfield, Ohio
Medford, Mass
Meriden, Conn
Meridian, Miss
Miami Beach. Fla
Middletown Town-
ship, N. J_-._
Midland, Tex
Monroe, La
Monterey Park, CaliL
Mount Vernon, N.Y..
Muncie, Ind
New Britain, Conn...
Newport, R.I
New Rochelle. N.Y._.
Newton, Mass
North Little Rock,
Ark
Norwalk, Conn
Oak Park, lU
Odessa, Tex
Ogden, Utah
Ontario, Cahf
Orange, Calif
Overland Park, Kans.,
Oxnard, Calif
Palo Alto, Calif
Parma, Ohio
Pasadena, Tex
Passaic, N.J
Pawtucket, R.I
Penn Hills Township,
Pa
Pensacola, Fla
Pine Bluff, Ark
Pittsfield, Mass
Index
total
485
302
406
923
032
1,335
2,877
940
1,023
1,178
1,363
1,097
747
722
2,454
637
950
483
532
2,565
329
873
544
842
1,411
1,530
1,002
347
1,103
1,527
1,025
829
378
528
1, 050
1,651
901
534
1,147
990
587
593
1,820
765
538
1,521
704
344
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
3
5
1
1
3
2
2
1
2
1
7
5
4
1
3
Forci-
ble
rape
Rob-
bery
10
19
13
8
25
36
109
39
40
33
51
39
13
18
87
18
14
Aggra-
vated
assault
26
6
29
55
20
172
115
16
88
25
24
42
157
46
1
17
29
26
13
80
179
12
53
38
48
15
41
12
72
2
24
80
83
34
24
59
16
45
84
277
132
53
6
Bur-
glary—
break-
ing or
enter-
ing
279
176
191
479
402
504
1,101
473
250
569
525
324
334
452
1,058
216
302
434
153
241
325
1,247
145
433
186
304
551
727
531
141
386
726
425
261
182
295
511
935
490
257
457
430
292
213
550
343
301
700
305
141
Larceny-
theft
$50
and
over
114
43
97
270
136
1,110
278
439
225
237
247
272
119
363
154
210
277
202
229
905
118
237
80
433
291
245
140
421
522
264
318
73
92
218
405
228
198
353
400
144
201
396
238
361
248
126
Under
$50
388
785
861
319
1,197
1,853
1,146
1,315
1,587
636
576
417
861
1,211
168
730
856
419
304
363
1,843
707
1,228
403
588
655
561
169
520
639
912
590
196
1,948
1,779
1,058
504
403
919
1,039
588
768
625
389
181
1,381
188
181
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 50,000 to 100,000
in popidation— Con.
Pomona. Calif
Pontiac, Mich
Port Arthur. Tex
Portland. Maine
Prichard, Ala
Pueblo, Colo
Quincy, Mass
Racine, "Wis
Rapid City, S. Dak...
Redford Township,
Mich
Redondo Beach, Calif.
Redwood City, Calif. .
Reno, Nev
Richmond, Calif
Rock Island. Ill
Rome, N.Y
Roseville, Mich
Royal Oak, Mich
St. Clair Shores, Mich.
St. Joseph, Mo
Salem. Oreg
Salinas, Calif
San Anaelo, Tex
San Leandro. CaUf
San Mateo, Calif
Santa Barbara. Calif..
Santa Clara, Calif
Santa Monica, Calif...
Schenectady, N.Y
Sioux City, Iowa
Sioux Falls, S. Dak—
Skokie, 111
Somerville, Mass
South Gate, Calif
Springfield, 111
Springfield, Ohio
Stockton, Calif
Sunnyvale, Calif
Tallahassee, Fla
Terre Haute, Ind
Tonawanda Town,
-X.Y
Troy, N.Y
Tuscaloosa, Ala
Tvler, Tex
Union City, N.J
Union Township, N.J.
University City, Mo..
Upper Darby Town-
ship, Pa
Vallejo, Calif
Waltham, Mass
Index
total
2.179
2,219
552
939
731
1,120
1,166
1,392
781
884
2,297
1,094
2,343
2,677
1,087
286
972
1,129
993
716
1,110
1,760
808
1,465
1,488
1,653
1,230
3,540
563
1,270
576
1,229
1,793
1,757
1,459
941
2.700
830
973
1,141
569
1,047
1,228
361
811
571
829
1,428
799
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
Forci-
ble
rape
1
5
9
1
7
1
1
8
1
3
2
5
2
1
Rob-
bery
60
19
102
131
37
1
22
44
12
150
11
15
10
19
47
83
81
Aggra-
vated
assault
95
249
6
33
115
85
12
227
18
42
53
224
56
52
201
13
24
32
69
22
31
13
136
67
115
17
Bur-
glary—
break-
ing or
enter-
ing
283
396
331
422
431
503
197
456
964
1,310
345
118
357
507
470
371
471
934
463
653
675
514
1,328
285
458
195
405
770
413
1,115
340
271
463
661
247
422
333
313
357
548
300
Larceny-
theft
$50
and
over
640
801
148
299
152
389
319
343
401
362
363
664
637
470
97
401
306
409
204
413
468
222
516
510
625
460
1.365
252
581
379
542
342
253
726
317
311
414
211
220
354
59
117
311
172
187
455
182
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
Index
total
Criminal
homicide
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
break-
ing or
enter-
ing
Larceny-
theft
City
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
$50
and
over
Under
$50
Auto
theft
Cities 60,000 to 100,000
in population— Con.
Warren, Ohio
1,086
1,663
891
928
812
411
454
1,482
373
1,134
1,044
204
444
1,391
1,451
484
2,633
997
621
680
163
136
698
246
556
436
466
236
99
1,557
752
425
523
904
260
179
299
427
1,134
256
212
173
201
749
118
1,082
204
413
193
829
2
2
3
2
4
2
3
2
1
2
5
4
9
11
5
25
5
16
41
37
5
7
24
5
14
33
1
14
34
39
7
196
22
10
39
1
1
31
10
22
26
24
1
1
55
15
5
34
12
1
5
5
10
7
42
34
63
30
56
10
2
26
8
45
70
9
24
182
40
27
24
11
8
33
8
5
2
9
18
24
11
7
5
66
36
30
191
14
6
3
6
28
92
5
5
..
53
1
69
2
62
7
73
450
672
317
334
233
139
147
760
204
609
559
74
204
437
730
164
1,172
466
280
299
73
98
472
88
199
193
319
75
37
398
342
178
129
393
99
63
173
218
534
113
114
89
102
454
40
510
117
141
90
383
343
715
414
338
314
197
204
432
80
302
215
81
148
575
357
125
539
354
247
148
48
21
88
107
238
136
64
125
39
549
186
139
140
394
114
92
77
128
324
76
67
66
54
114
46
317
38
90
79
265
774
1,035
824
938
838
516
1,036
904
123
782
1,563
73
460
534
510
313
1,842
623
910
695
322
309
580
196
674
535
702
303
88
1,087
123
291
210
763
554
159
276
422
456
190
261
156
456
628
114
636
430
411
200
1,375
219
Warwick R I
131
Waterford Township,
Mich
69
Waterloo, Iowa
Waukegan, 111
172
163
60
West Allis, Wis
West Covina, Calif,.-.
West Hartford, Conn
2
1
2
3
22'
10
6
7
2
_..
5
2
6
1
3
9
92
217
66
Westminster, Calif
West Pahn Beach, Fla.
Weymouth, Mass
Wheeling, W. Va
White Plains, N.Y....
Whittier, Cahf
8
2
1
3
3
4
1
1
1
2
158
152
35
53
149
280
Wilkes-Barre Pa
159
Wilmington, Del
Woodbridge Town-
ship N J
10
1
f
1
3
2
__
5
1
3
2
686
142
Wyoming, Mich
York, Pa
73
151
Cities 25,000 to 50,000
in population
Aberdeen S Dak
32
Alamogordo, N. M'ex..
Alexandria, La
1
3-
1
__
2
5
1
11
101
Aliquippa, Pa
28
Allen Park, Mich
Alliance, Ohio
74
56
Alton, 111
47
Ames Iowa
28
Amesterdam N Y
1
10
8
2
3
2
1
16
Anchorage, Alaska
7
472
165
1
5
__
1
70
Anniston, Ala
21
Arcadia, Calif.. _
89
Arlington Heights, 111.
Arvada Colo
40
15
38
Ashtabula, Ohio
Athens, Ga
3
8
1
6
3
2
2
4
5
38
165
Attleboro, Mass
Auburn, Maine
Auburn N Y
55
2b
2
1
27
32
1
16
1
19
ir
36
2
1
3
i
1
1
3
9
-.
96
Baldwin Borough, Pa.
Baldwin Park, Calif...
Bangor, Maine . . _ .
29
144
43
1&2
Bartlesville Okla
16
Battle Creek, Mich.—
i
2
4
84
183
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 25.000 to 50,000
in population— Con.
Bavtown, Tex
Belleville, 111
Belleville, N.J
Bellingham, Wash.
Belmont, Mass
Beloit, Wis
Bensaleni Township,
Pa
Bergenfield, N.J
Bessemer, Ala
Bethel Park, Pa
Beverlv, Mass
Beverly Hills, Calif.
Big Spring, Tex
Biloxi, Miss
Birmingham, Mich..
Bismarck, N. Dak.
Bloomington, 111...
Bloomington, Ind.
Blytheville, Ark..
Bossier City, La. .
Bowling Green, Ky.
Braintree, Mass....".
Bremerton, Wash
Brighton, N.Y
Brooklyn Center,
Minn
Bryan, Tex
Burlingame, Calif.
Burlington, Iowa..
Burlington, N.C..
Burlington, Vt
Butte, Mont
Calumet City, 111....
Cape Girardeau, Mo.
Carlsbad, N.Mex...
Casper, Wyo
Cedar Falls, Iowa...
Charlottesville, Va..
Chelsea, Mass
Cheltenham Town-
ship, Pa
Cherry Hill, N.J... .
Cheyenne, Wyo
Chicago Heights, ill.
Chillicothe, Ohio
Clarksburg, W. Va...
Clarkstown, N.Y....
Clearwater, Fla.
Chnton, Iowa...
Clovis, N. Mex..
Columbia, Mo...
Columbus, Miss.
Index
total
551
413
335
297
258
235
182
88
674
165
534
512
396
528
290
714
473
426
334
659
409
246
416
684
175
486
342
483
664
281
617
132
347
751
585
1,005
575
871
160
742
320
788
384
313
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
break-
ing or
enter-
ing
74
5
5
130
5
105
17
125
10
2
1
10
5
29
31
19
10
13
16
14
20
31
124
5
4
Incomplete
6
3
17
34
6
1
13
18
14
22
5
33
239
192
175
98
146
99
74
32
221
84
226
239
196
202
93
130
155
HI
219
122
213
123
131
147
314
105
149
121
123
238
125
Incomplete
316
63
116
284
224
330
207
3^5
92
310
96
345
164
167
Larceny-
theft
$50
Under
and
$50
over
194
374
171
447
79
80
135
899
t i
135
73
420
48
132
35
64
227
426
52
98
176
494
133
226
108
299
142
263
141
539
101
535
269
597
206
530
185
287
122
220
232
342
174
180
155
710
107
250
73
395
115
235
249
290
40
307
179
363
71
546
164
352
201
310
90
343
177
708
37
110
157
483
110
180
234
453
497
399
217
945
226
449
45
91
212
466
289
739
156
567
328
651
142
688
73
148
184
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
Index
total
Criminal
homicide
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
break-
ing or
enter-
ing
Larceny-
theft
City
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
$50
and
over
Under
$50
Auto
theft
Cities 25,000 to 60,000
in populaiion— Con.
Concord N H
117
219
1, 125
115
646
102
205
1,312
173
432
729
661
4
8
5
5
43
36
106
381
29
275
57
104
501
54
178
334
239
51
72
591
61
180
36
66
449
72
166
259
246
85
104
25
152
71
99
85
251
230
44
166
68
156
187
85
160
227
148
88
218
95
229
411
79
147
65
191
258
116
196
210
113
76
129
87
241
40
346
854
643
272
84
237
633
222
225
679
649
106
166
160
329
277
256
512
781
456
63
236
400
228
502
530
767
692
544
291
496
358
779
713
228
530
65
730
709
177
373
352
379
705
247
336
905
26
Coon Rapids, Minn...
Coral Gables Fla
33
3
29
116
Corvallis, Oreg
Covina Calif
2
18
3
1
19
126
Cranford Township,
N J
8
Crystal Minn
3
83
5
1
21
5
I
6
47
2
14
37
102
26
Culver City, Calif
Cumberland, Md
Danbury, Conn
Danville, 111
3
1
3
3
9
229
1
1
3
8
1
1
3
1
2
38
69
72
Danville, Va. _..
52
ncomplete
198
340
166
331
301
208
437
718
569
149
294
373
433
586
227
360
662
440
295
425
273
598
2,113
220
432
330
530
486
587
380
546
246
236
285
2
2
28
9
67
2
13
18
9
1
11
11
..
'7'
15
14
117
41
24
47
89
7
24
14
9
19
23
2
13
13
9
3
ncomple
61
126
89
104
126
82
183
291
258
69
88
217
205
278
98
132
306
199
72
113
107
271
1,100
111
188
201
218
120
255
56
209
81
110
130
te
49
FJprihnm Mass
1
1
1
108
Denison, Tex
2
--
1
4
7
1
32
20
7
1
3
15
1
1
1
1
5
21
3
8
5
85
6
9
13
24
9
7
6
4
3
2
I
4
5
20
Denton, Tex
59
Dothan, Ala
26
East Brunswick
Township, N.J
24
3
1
121
East Detroit, Mich
137
East Hartford Conn
65
East Haven Town,
Conn
34
East Lansing, Mich...
Easton, Pa
4
2
f
--
1
4
2
26
61
East Point, Ga
East Providence, R. I.
Eau Claire Wis
1
f
68
112
42
2
1
2
1
1
1
1
2
60
El Cajon, Cahf
El Cerrito, Calif
El Dorado, Ark
Elkhart, Ind
103
56
13
40
Elmhurst, 111
40
Ehnira N Y
2
3
1
2
1
1
42
El Monte, Calif
Enfield, Conn
13
5
1
4
.-
-.
2
1
412
16
Englewood, Colo
Englewood, N.J
Enid, Okla
66
31
110
Eureka, Calif
61
Everett, Mass
1
184
Evergreen Park, IU_-.
Ewing Township, N.J
118
3
108
32
Fairfield, Calif
Fair Lawn, N.J
Fairmont, W Va
1
1
--
1
1
35
19
Falls Township, Pa. . -
Fargo, N. Dak
240
464
2 118
5 151
29
59
185
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in PopaZotion^Continued
City
Cities 25,000 to 50,000
in population — Con.
Farmington, N. Mex.
Ferguson, Mo
Ferndale, Mich
Findlay, Ohio
Fitchburg, Mass
Flagstaff, Ariz
Florence, Ala
Florence, S.C
Fond du Lac, Wis-
Fort Collins, Colo.
Fort Dodge, Iowa-
Fort Lee, N.J
Fort Mvers, Fla...
Fort Pierce, Fla...
Freeport, III
Freeport, N.Y
Gainesville, Fla
Galesburg, 111
Gardena, Calif
Garden City, Mich
Garden City, N.Y
Garfield, N.J
Garfield Heights.Ohio
Gastonia, N.C
Glen Cove, N.Y
Glendale, Ariz
Glendora, Calif
Gloucester, Mass
Goldsboro. N.C. . .
Grand Forks, N. Dak.
Grand Island, Nebr.
Grand Prairie. Tex
Granite City, 111
Greeley, Colo
Greenburgh, N.Y._.
Greenville, Miss
Greenville, N.C
Gulfport, Miss
Hackensack, N.J
Hagerstown, Md
Haltom City, Tex..
Haniden, Conn
H amt ra m ck . M ich .
Harlingen, Tex
Harvey, 111
Hattiesburg, Miss.
Haverhill, Mass...
Hawthorne, Calif..
Hazel Park, Mich.
Hazleton, Pa
Hempstead, N.Y.
Highland Park, 111
Highland Park. Mich.
Hilo. Hawaii
Hobbs, N. Mex.
Index
total
399
256
602
255
547
459
317
575
228
576
338
435
512
182
937
304
353
1.39
247
820
300
494
519
.330
662
376
309
890
583
343
692
328
425
404
310
467
1,433
395
763
367
708
1.482
799
221
2,011
213
571
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh
ter
Man-
slaugh-
ter by
negli-
gence
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
break-
ing or
enter-
ing
Larceny-
theft
$50
and
over
Incomplete
2
21
11
23
27
50
9
15
56
35
12
28
3
11
4
9
18
7
9
207
1
18
7
41
7
28
1
7
7
56
4
1
0
17
91
13
10
3
s
9
47
3
20
3
73
11
13
13
16
18
28
18
12
3
5
135
104
9
63
42
31
8
36
10
9
57
27
Incomplete
Incomplete
35
36
9
9
269
78
11
16
15
103
245
129
263
156
178
328
106
112
183
231
278
65
236
479
144
471
121
150
56
152
288
121
248
293
139
324
137
123
411
329
108
186
177
180
211
305
82
172
408
174
206
157
377
495
319
89
722
124
269
153
96
190
93
190
194
84
109
66
357
120
137
61
258
279
132
169
31
47
196
77
128
134
66
185
161
145
236
104
143
351
92
119
130
308
160
71
230
334
123
257
125
159
640
270
84
604
58
197
186
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 25,000 to 50,000
in population — Con.
Hoboken, N J
Holland, Mich__.
Hot Springs, Ark.
Houma. La
Huntington Park,
Calif
Hutchinson, Kans.
Idaho Falls, Idaho.
Inkster, Mich
Iowa City, Iowa....
Ithaca, N.Y
Jackson, Mich
Jackson, Tenn
Jamestown, N.Y...
Janesville, Wis
Jefferson City, Mo.
Johnson City, Tenn.
Johnstown, Pa
Joplin, Mo
Kankakee, 111
Kannapolis, N.C
Kearny, N.J
Key West, Fla....
Killeen, Tck
Kingsport, Tenn.
Kingston, N.Y...
Kingsville, Tex
Kinston, N.C
Kirkwood, Mo
Kokomo, Ind
Lackawanna, N.Y.
La Crosse, Wis. .
Lafayette, Ind...
La Grange, Ga..
La Habra, Calif.
Lakeland, Fla...
La Mesa, Calif
Lancaster, Ohio
Las Cruces, N. Mex.
Laurel, Miss
Lawrence, Kans
Leavenworth, Kans.
Lebanon, Pa
Leominster, Mass
Lewiston, Maine
Lexington, Mass
Linden, N.J
Livermore, Calif.
Livingston, N.J..
Lockport, N.Y..
Lodi, Calif
Lodi, N.J
Lombard, 111
Long Beach, N.Y.
Long Branch, N.J.
Longview, Tex
Index
total
539
89
611
336
1,440
311
633
846
493
380
849
492
316
374
238
633
311
515
477
274
278
352
397
317
422
168
435
291
533
554
345
646
190
732
718
471
566
528
429
600
275
235
307
394
231
613
347
142
284
236
334
90
886
453
478
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugl
ter
Man-
slaugh-
ter by
negli-
gence
Forci-
ble
rape
Rob-
bery
20
1
15
7
126
Aggra-
vated
assault
45
2
32
30
52
12
3
148
11
13
Bur-
glary—
break-
ing or
enter-
ing
249
49
318
101
634
184
146
375
184
66
379
275
206
148
100
Larceny-
theft
44
214
12
177
5
257
113
164
91
69
5
118
67
114
47
223
9
147
82
138
5
85
146
85
17
126
3
181
68
184
162
4
331
35
71
12
340
30
317
17
234
71
268
26
287
81
159
28
209
8
135
3
93
6
153
14
181
133
11
258
11
209
13
56
38
85
5
107
14
115
8
36
118
248
19
133
61
238
$50
and
over
27
15
187
157
304
415
98
198
212
268
129
42
156
94
201
46
193
115
71
81
87
77
120
139
54
117
102
188
137
112
202
52
292
246
170
125
296
101
88
87
124
75
158
95
55
118
84
141
37
390
201
119
Under
$50
54
396
310
200
845
715
824
317
357
436
824
360
44
536
367
350
221
503
482
271
178
122
150
285
244
132
290
341
724
238
580
235
489
976
518
327
593
226
834
345
386
299
538
151
413
494
127
232
310
165
103
418
195
187
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
Index
total
Criminal
homicide
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
l3reak-
ing or
enter-
ing
Larceny-
theft
City
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
$50
and
over
Under
$50
Auto
theft
Cities 25,000 to 50,000
in population— Con.
Longview, Wash
240
1,318
474
311
419
1,209
282
216
202
846
559
512
252
345
396
514
98
588
722
191
371
219
990
426
513
904
320
789
276
149
619
651
282
251
124
267
425
551
1,492
778
172
687
502
1,155
916
210
140
155
596
485
1
'
1
1
2
69
13
6
14
1
3
28
11
4
4
92
'i
10
15
45
9
4
20
2
n
29
53"
21
32
9
21
33
11
111
21
10
8
1
28
5
17
2
132
615
194
128
216
727
116
31
81
295
253
164
121
126
172
254
66
247
297
104
163
72
309
176
321
319
136
373
116
48
267
195
137
124
87
82
166
194
907
342
85
316
217
662
414
50
78
51
191
210
48
418
183
125
159
305
133
133
46
276
183
267
93
152
124
111
24
121
302
56
107
118
540
162
82
286
78
228
99
73
257
331
90
34
31
106
164
212
231
291
51
203
205
222
298
107
56
67
278
179
443
444
453
166
359
526
578
530
310
469
634
694
196
450
347
192
363
318
728
243
325
225
1,056
564
230
412
158
691
343
593
552
496
189
31
30
488
901
1,063
2,181
499
260
270
323
524
620
176
69
79
837
498
54
Lynwood, Calif
Madison Heights,
Mich
Madison Township,
N.J
1
1
1
1
3
1
1
180
72
53
Manchester Town-
33
Manhattan Beach,
Calif
133
Manitowoc, Wis
31
Mankato, Minn.. _ __
1
_.
41
Maple Heights, Ohio..
Marietta, Ga
1
2
1
1
11
12
5
4
9
4
19
22
'i
28
5
1
10
2
11
2
25
3
30
6
1
10
5
3
3
48
914
109
Marion, Ohio
1
3
1
11
79
Marshall, Tex . . _ .
_-
2
3
1
13
Mason City, Iowa
MasstUon, Ohio
Maywood, 111
McAUen, Tex
59
68
84
4
McKeesport. Pa
Medford, Oreg
3
6
4
133
93
Melrose, Mass _ _
23
MenloPark, Calif
Mentor, Ohio
1
1
3
2
3
2
8
56
24
Mesa, Ari7, .
1
1
1
3
.-
1
1
1
1
2
3
1
3
105
Mesquite, Tex
45
Methuen, Mass
Michigan Citv, Ind
Middletown, Conn
Middletowa, Ohio
Middletown Town-
ship. Pa
94
157
80
138
46
Midland, Mich...
2
1
2
1
2
94
Midwest City, Okla...
MilfordTown, Conn..
54
114
Millcreek Township,
Pa
1
39
Milton, Mass... . _
88
Minnetonka, Minn
6
Minot, N. Dak
1
2
4
51
16
1
18
4
35
23
1
3
6
7
17
17
10
10
52
14
17
44
29
23
3
--
13
11
59
Mishawaka, Ind
78
Missoula, Mont.
1
2
1
3
-.
130
Modesto, Calif
1
1
1
1
2
1
1
1
10
3
5
10
249
Moline, 111
109
16
Monroe, Mich
Monrovia, Calif.
Montclair, N.J...
93
66
Montebello, Calif
Monterey, Calif
Moorhead, Minn .. _
199
148
49
Morristo\\-n, Term
3
Morton Grove, HI
Mountain View, Calif..
Mount Clemens, Mich
2
2
1
2
3
30
102
63
188
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
Index
total
Criminal
homicide
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
glary—
break-
ing or
enter-
ing
Larceny —
theft
City
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
$50
and
over
Under
$50
Auto
theft
Cities 25,000 to 50,000
in population— Con.
Mount Lebanon
Township, Pa
Mount Pleasant, N Y
138
84
156
913
601
382
275
272
201
609
162
425
853
583
1,077
683
486
118
719
514
2,081
324
622
570
115
583
249
148
799
776
515
184
324
338
359
299
174
518
413
112
904
781
186
184
377
212
314
943
419
483
1
1
2
115
25
9
8
19
2
7
2
22
83
8
96
105
2
22
27
18
54
9
19
75
4
6
25
3
34
8
13
2
6
12
13
38"
34
22
40
52
12
1
4
4
26
34
7
72
76
37
39
365
315
165
96
116
51
211
71
147
294
165
431
326
239
57
306
183
988
72
204
242
58
204
62
54
249
368
206
86
175
130
156
182
102
147
121
43
364
371
71
72
198
92
128
401
213
272
38
22
40
294
130
160
86
102
121
251
48
132
305
304
278
168
147
28
229
150
874
178
315
141
25
211
66
68
330
304
210
60
92
120
105
66
45
201
194
33
321
164
74
91
109
57
96
396
97
63
93
130
308
1,093
531
759
318
284
74
815
152
165
679
527
591
311
209
149
381
342
1,497
202
531
319
69
213
244
130
371
628
589
112
160
192
209
471
46
615
620
143
833
342
141
82
939
176
307
702
383
684
23
1
1
2
30
14
7
3
2
1
37
1
13
34
7
60
14
13
2
15
19
17
7
8
3
21
13
3
35
16
22
2
11
1
12
2
2
12
16
1
27
46
4
1
22
Mount Prospect, 111....
Muskegon, Mich
Muskogee, Okla
Napa, Calif
73
1
3
1
1
2
3
1
3
5
1
3
1
105
109
39
Nashua, N.H
78
Natchez, Miss
30
Natick Mass
26
National City, Calif.-.
Needham, Mass._.
1
2
5
1
7
1
6
2
1
97
39
Neptune Township,
N.J
1
2
2
1
103
New Albany, Ind
Newark Ohio
134
93
New Brunswick, N.J..
Newburgh, N.Y
New Castle, Pa
1
3
209
66
85
New Iberia La
9
New London, Conn...
Newport, Ky.
1
1
1
2
1
1
2
2
7
139
141
Newport Beach, Calif.
Niles, 111 .
141
58
Norman, Okla
81
Norristown, Pa
Northampton', Mass
3
6
6
97
19
North Bergen Town-
ship N J
1
140
North Chicago, 111
North Huntingdon
Township. Pa
North Las Vegas, Nev .
North Miami Fla
83
6
10
3
14
3
o
138
77
North Miami Beach,
Fla _
3
1
61
North Tonawanda,
N.Y
2
4
3
29
Norwich, Conn
37
75
Norwood Ohio
84
Novato, Calif
36
Nutley, N.J-
25
Oak Lawn, 111
2'
2
1
3
3
1
1
__
1
1
2
~2
23
1
4
118
Oak Park, Mich
Oak Ridge, Temi
Oceanside, Calif
Orange, N.J
48
9
127
140
Orange, Tex _ __
21
Orangetown, N.Y
Oshkosh, Wis
15
66
Ottumwa, Iowa
Overland, Mo.-. _ _.
1
r
1
' 1
2
5^
1
5
3
15
6
13
63
- 56
Owensboro, Ky
Pacifica, Calif
95
96
Paducah, Ky
3
i
59
189
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population— Continued
Index
total
Criminal
homicide
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Bur-
tekT
ingor
enter-
ing
Larceny-
theft
City
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
$50
and
over
Under
$50
Auto
theft
Cities 25,000 to 50,000
in population— Con.
Pampa, Tex
Panama City. Fla
253
516
580
453
122
191
210
249
406
481
583
847
292
160
897
429
754
178
309
343
358
672
295
584
290
176
465
361
345
450
747
842
389
507
114
579
128
368
518
348
441
529
538
261
529
723
211
347
696
441
1
4
1
1
i
1
1
1
f
9
11
8
3
6
6
13
18
49
4
2
32
11
11
1
9
4
17
24
5
16
2
1
13
1
16
2
16
31
4
9
2
11
3
13
2
2
12
2
7
1
7
9
3
1
5
6
4
56
6
5
2
8
27
15
11
40
129
27
12
64
17
75
6
8
9
3
31
28
39
1
2
17
9
27
11
8
23
1
8
12
6
._
15
2
48
102
1
15
25
2
9-
-
115
262
118
286
37
91
101
103
208
248
139
420
130
89
455
258
202
107
133
197
167
267
73
307
157
55
197
132
152
202
322
241
172
251
60
272
60
139
167
176
151
236
228
69
188
290
140
133
282
236
100
151
380
98
55
58
66
40
134
119
235
131
85
43
217
91
343
42
111
67
131
231
90
147
114
66
212
164
86
191
301
150
155
169
25
171
30
133
233
101
200
154
97
151
224
347
48
139
295
39
275
391
507
317
556
183
75
237
447
242
262
641
132
262
659
798
1,227
140
321
730
261
556
239
535
224
946
140
197
318
147
540
188
509
384
193
921
227
382
800
398
257
538
224
350
172
498
62
1,016
736
174
32
34
65
Parkersburg, W. Va-.
Park Forest, 111
52
27
Park Ridge, 111
1
r
25
Parsippany-Troy
Hills.N.J
7
2
1
11
83
Pekin, ill
51
Pennsauken. N.J
Perth Amboy, N.J. __.
Petersburg. Va
Phenix City, Ala
Piseataway Town-
ship, N.J
Plainfield, N.J
Pleasant Hill, Calif.. __
1
1
4
1
1
-
2
1
1
2
11
5"
2
1
i
2
1
2
3
1
2
88
148
103
43
14
124
50
Pocatello, Idaho
Ponca City, Okla
Port Chester, N.Y..__
Port Huron, Mich
Portsmouth, N.H
Portsmouth, Ohio
Pottstown, Pa
Poughkeepsie, N.Y.. .
Prairie Village, Kans..
2
3'
1
1
1
2
1
i
2"
2
120
22
44
63
38
116
96
72
15
Provo, Utah
53
Quincy, 111
Radnor Township, Pa.
Rahway, N.J
Ramapo, N.Y
Redlands, Calif
__-.__
3
1
5
1
4
2
6
3-
41
44
81
23
95
Revere, Mass
4
1
5
409
Richardson, Tex
Richfield, Minn
35
74
Richland, Wash
19
Richmond, Ind
Ridgewood, N.J
Ridley Township, Pa.
5
1
1
_-
108
28
83
Rochester, Minn
4
1
2
1
7
108
Rock Hill, S.C
Rockville Centre,
N.Y.
1
2
2
5
2
52
79
Rocky Mount, N.C...
Rome, Ga . ..
86
92
39
Roseville, Minn
Ross Township, Pa.
2
4
93
Roswell, N. Mex.
St. Charles, Mo
5
1
2
43
17
St. Cloud, Minn
St. Louis Park, Minn
4
1
4
73
101
Salem, Mass
160
190
Table 51. — Number of Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population — Continued
City
Cities 25,000 to 50,000
in population— Con.
Salina, Kans
San Bruno, Calif
Sandusky, Ohio
San Gabriel, Calif.__.
San Luis Obispo, Calif
San Rafael, Calif_^.
Santa Cruz, Calif...
Santa Fe, N. Max..
Santa Maria, Calif-
Santa Rosa, Calif...
Sarasota, Fla...
Sayreville, N.J_
Scottsdale, Ariz.
Sedalia, Mo
Selma, Ala
Shaker Heights, Ohio.
Shaler Township, Pa..
Shawnee, Okla
Sheboygan. Wis
Sherman, Tex
South Euclid, Ohio...
Southfield, Mich
Southgate, Mich
Southington Town,
Conn
South San Francisco,
Calif
Spartanburg, S.C
Springfield Township,
Pa
State College, Pa
Steubenville, Ohio
Stillwater, Okla
Stratford, Conn
Sumter, S.C
Superior, Wis
Taunton, Mass
Teaneck Township,
N.J
Tempe, Ariz
Temple, Tex
Texarkana, Tex...
Texas City, Tex...
Torrington, Conn.
Trumbull, Conn_.
Upland, Calif
Upper Arlington,
Ohio
Urbana, 111
Valdosta, Ga
Vancouver, Wash .
Ventura, Cahf
Vicksburg, Miss..
Victoria, Tex
Villa Park, 111
Index
total
355
473
283
423
298
752
882
853
844
551
235
,145
303
396
349
152
380
315
120
815
402
237
525
726
264
155
470
193
667
363
421
613
334
928
647
364
451
182
242
539
175
226
379
413
049
258
435
159
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh-
ter
Man-
slaugh-
ter by
negli-
gence
Forci-
ble
rape
Rob-
bery
10
Aggra-
vated
assault
1
102
17
Bur-
glary—
break-
ing or
enter-
ing
129
244
133
194
173
235
507
353
549
184
328
114
344
103
229
147
59
154
143
79
273
96
153
218
312
104
68
181
63
287
186
228
274
196
304
295
173
166
116
265
96
111
173
473
231
Larceny-
theft
$50
and
over
147
102
64
125
63
363
181
293
133
214
155
67
615
142
101
79
66
146
97
37
22
367
196
175
213
67
133
101
254
107
179
118
113
81
201
74
71
145
158
377
63
82
44
Under
$50
591
407
479
239
79
752
649
1,078
1,193
809
162
830
393
278
556
97
215
986
231
82
1,002
492
116
511
685
373
137
268
229
373
326
665
450
224
545
182
514
146
306
465
247
278
420
737
133
337
170
191
Table 51.— iVwmbcr o/ Offenses Known to the Police, 1965, Cities and Towns
25,000 and Over in Population— Continued
City
Index
total
Cities 25,000 to 50,000
in population— Con.
Vineland, NJ 292
Wakefield, Mass I 196
Walla Walla, W^ash....l 387
Wallins^ford, Conn I 371
Watertown, M ass | 383
Watertown, N.Y ^ 514
Waukesha, Wis 215
W^ausau, Wis 159
Wa%nie Township, N.J. 527
Webster Groves, Mo_ _ 220
Weirton, W. Va
Wellesley, Mass
Westfield, Mass
Westfield, N.J
West Haven, Conn-
West Mifflin, Pa
West New York, N.J.
W^est Orange, N.J
Westport , C onn
West Seneca, N.Y
West Springfield, M ass.
Wheaton, 111
Whitehall, Ohio
Wilkinsburg, Pa
Williamsport, Pa
Wilmette, 111
Wihnington, N.C.
Wilson, N.C
Winona, Minn
Woburn, Mass
Woonsocket, R.I. .
Wyandotte, Mich.
Yakima, Wash
Yuma, Ariz
Zanesville, Ohio...
Canal Zone..
Guam
Puerto Rico-
222
311
176
564
160
425
303
560
363
337
135
345
501
443
244
1, 259
477
103
263
450
455
1,221
897
396
619
577
Criminal
homicide
Murder
and
non-
negli-
gent
man-
slaugh
ter
2
1
2
1
2
1
180
Man-
slaugh-
ter by
negli-
gence
1
11
317
Forci-
ble
rape
Rob-
bery
Aggra-
vated
assault
Incomplete
19
8
1.184
211
156
1
7
25
10.827
Larceny-
theft
Bur-
glary—
break-
mgor
$50
Under
enter-
and
$50
ing
over
189
15
328
96
74
262
132
181
827
171
154
201
147
121
157
353
109
399
97
77
274
70
56
612
259
208
307
132
55
279
110
92
84
125
130
251
68
60
105
213
231
365
63
43
65
264
54
193
159
68
160
230
241
373
187
111
225
100
129
216
59
57
273
149
138
393
207
74
292
223
154
607
117
81
468
562
255
815
120
103
467
37
45
77
103
98
79
142
141
153
158
115
820
569
388
1,999
327
331
669
200
98
421
361
198
910
272
122
413
15, 264
8, 649
9.300
192
U.S. GOVERNMENT PRINTING OFFICE:1966
FOR CHANGE OF ADDRESS
Complete this form and return to:
Director
Federal Bureau of Investigation
Washington, D.C. 20535
(Name)
(Tide)
{Address)
(City)
(Zone)
(State)
UNITED STATES DEPARTMENT OF JUSTICE
FEDERAL BUREAU OF INVESTIGATION
WASHINGTON 25, D.C.
POSTAGE AND FEES PAID
FEDERAL BUREAU OF INVESTIGATION
OFFICIAL BUSINESS
RETURN AFTER 5 DAYS
BOSTON PUBLIC LIBRARY
Illlilllll ,
3 9999 06352 404 3
-oVJiw.4.'7-«'„